1
|
Lan Y, Shen J, Liu R, Jiang K, Qiu M, Wang S, Lin Z. Analysis of risk factors for intraoperative bleeding in patients with Siewert type II esophagogastric junction adenocarcinoma treated by two minimally invasive surgeries and its influence on prognosis: a retrospective study. Front Oncol 2024; 14:1426349. [PMID: 39416465 PMCID: PMC11479957 DOI: 10.3389/fonc.2024.1426349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Background The present study aimed to analyze the independent risk factors for intraoperative bleeding in Siewert II adenocarcinoma of the esophagogastric junction (AEG) using two minimally invasive surgical approaches, namely, the laparoscopy-assisted abdominal trans-hiatal (LTH) method and transthoracic-laparoscopic esophagectomy (TLE). Methods The clinical data of 100 patients with SiewertII AEG admitted to our hospital from October 2017 to October 2020 were retrospectively analyzed. According to the type of surgery, the patients were divided into LTH approach group and TLE approach group. The differences between the clinical characteristics of the patients in different groups and the differences in the intraoperative bleeding and prognosis between different surgical procedures were analyzed and compared using the t-test and chi-squared test. Multiple linear regression was used to identify the independent risk factors affecting the amount of intraoperative bleeding in patients. Results The results of this study showed that patients in the LTH group had significantly less intraoperative bleeding and operative time and significantly better postoperative recovery than the TLE group. The results of multivariate linear regression showed that the combined trans-thoracic-abdominal approach (P=0.000), advanced age (P=0.014), larger BMI (P=0.000), and larger tumor diameter (P=0.001) were the independent risk factors influencing the increase in intraoperative bleeding. Conclusion In addition to the conventional factors that affect intraoperative bleeding, such as the patient's general condition, operation time, and tumor size, LTH surgery is another way to avoid intraoperative bleeding for Siewert type II AEG patients and can significantly improve postoperative recovery.
Collapse
Affiliation(s)
- Yang Lan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Shen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ruqian Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingyuan Qiu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shuai Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhou Lin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Andreadis D, Zisis V, Anastasiadou P, Anagnostou L, Paraskevopoulos K, Poulopoulos A. Aldehyde Dehydrogenase: An Off-Label Marker of Endothelial Activation in Oral Squamous Cell Carcinoma. Cureus 2023; 15:e41596. [PMID: 37559839 PMCID: PMC10408774 DOI: 10.7759/cureus.41596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
The vascular endothelial (VE) expression of aldehyde dehydrogenase (ALDH) 1/2 family in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cases has not been studied so far. The aim of this study was to illustrate the "off-label" endothelial expression of cancer stem cell (CSC) biomarker, ALDH1/2, adjacent to oral potentially malignant and malignant lesions in order to shed some light on the mechanisms leading to oral carcinogenesis. Materials and methods: The expression of CSC protein-biomarker ALDH1/2 was detected through immunohistochemistry (IHC) in 30 paraffin-embedded samples of OL and 21 samples of OSCC compared to five samples of normal oral mucosa. Statistical analysis was done using SPSS, Pearson Chi-square, and Fischer's exact test. The significance level was set at 0.05 (p≤ 0.05). Results: In oral mucosal vessels, ALDH1/2 was not expressed. It was expressed significantly more in the vessels of OSCCs compared to the OLs (Fisher's exact test, p-value= 0,001). However, when endothelial expression of ALDH1/2 in the vasculature of OLs was compared with that of the normal oral mucosa, no significant change was noticed (Fisher's exact test, p-value=1.000). Discussion: The IHC VE expression of ALDH1/2 in OSCC vasculature but not in OL indicates a possible significantly stronger activation of endothelial cells during carcinogenesis, which could be an indicator of the role of inflammation in the development of field cancerization and of prognostic value for (vascular/lymphatic) metastasis.
Collapse
Affiliation(s)
- Dimitrios Andreadis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Vasileios Zisis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Lefteris Anagnostou
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | |
Collapse
|
3
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
4
|
Liu W, Zhou Z, Yang X, Shi H. Whether cancer stem cell markers can serve as the markers for malignant progression of oral potentially malignant disorders. Oral Dis 2022; 28:2057-2058. [PMID: 34837299 DOI: 10.1111/odi.14088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital of Fengxian District, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengtong Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiujuan Yang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Shi
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review. Gels 2022; 8:gels8060379. [PMID: 35735722 PMCID: PMC9222364 DOI: 10.3390/gels8060379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Organoids are novel in vitro cell culture models that enable stem cells (including pluripotent stem cells and adult stem cells) to grow and undergo self-organization within a three-dimensional microenvironment during the process of differentiation into target tissues. Such miniature structures not only recapitulate the histological and genetic characteristics of organs in vivo, but also form tissues with the capacity for self-renewal and further differentiation. Recent advances in biomaterial technology, particularly hydrogels, have provided opportunities to improve organoid cultures; by closely integrating the mechanical and chemical properties of the extracellular matrix microenvironment, with novel synthetic materials and stem cell biology. This systematic review critically examines recent advances in various strategies and techniques utilized for stem-cell-derived organoid culture, with particular emphasis on the application potential of hydrogel technology in organoid culture. We hope this will give a better understanding of organoid cultures for modelling diseases and tissue engineering applications.
Collapse
|
6
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
7
|
Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation. Int J Oral Sci 2020; 12:23. [PMID: 32826859 PMCID: PMC7442837 DOI: 10.1038/s41368-020-00090-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
The integrity of the basal stem cell layer is critical for epithelial homoeostasis. In this paper, we review the expression of oral mucosal stem cell markers (OM-SCMs) in oral submucous fibrosis (OSF), oral potentially malignant disorders (OPMDs) and oral squamous cell carcinoma (OSCC) to understand the role of basal cells in potentiating cancer stem cell behaviour in OSF. While the loss of basal cell clonogenicity triggers epithelial atrophy in OSF, the transition of the epithelium from atrophic to hyperplastic and eventually neoplastic involves the reactivation of basal stemness. The vacillating expression patterns of OM-SCMs confirm the role of keratins 5, 14, 19, CD44, β1-integrin, p63, sex-determining region Y box (SOX2), octamer-binding transcription factor 4 (Oct-4), c-MYC, B-cell-specific Moloney murine leukaemia virus integration site 1 (Bmi-1) and aldehyde dehydrogenase 1 (ALDH1) in OSF, OPMDs and OSCC. The downregulation of OM-SCMs in the atrophic epithelium of OSF and their upregulation during malignant transformation are illustrated with relevant literature in this review.
Collapse
|
8
|
Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020; 19:1731-1775. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Purpose Re-examine the current metabolic models. Methods Review of literature and gene networks. Results Insulin activates Pi uptake, glutamine metabolism to stabilise lipid membranes. Tissue turnover maintains the metabolic health. Current model of intermediary metabolism (IM) suggests glucose is the source of energy, and anaplerotic entry of fatty acids and amino acids into mitochondria increases the oxidative capacity of the TCA cycle to produce the energy (ATP). The reduced cofactors, NADH and FADH2, have different roles in regulating the oxidation of nutrients, membrane potentials and biosynthesis. Trans-hydrogenation of NADH to NADPH activates the biosynthesis. FADH2 sustains the membrane potential during the cell transformations. Glycolytic enzymes assume the non-canonical moonlighting functions, enter the nucleus to remodel the genetic programmes to affect the tissue turnover for efficient use of nutrients. Glycosylation of the CD98 (4F2HC) stabilises the nutrient transporters and regulates the entry of cysteine, glutamine and BCAA into the cells. A reciprocal relationship between the leucine and glutamine entry into cells regulates the cholesterol and fatty acid synthesis and homeostasis in cells. Insulin promotes the Pi transport from the blood to tissues, activates the mitochondrial respiratory activity, and glutamine metabolism, which activates the synthesis of cholesterol and the de novo fatty acids for reorganising and stabilising the lipid membranes for nutrient transport and signal transduction in response to fluctuations in the microenvironmental cues. Fatty acids provide the lipid metabolites, activate the second messengers and protein kinases. Insulin resistance suppresses the lipid raft formation and the mitotic slippage activates the fibrosis and slow death pathways.
Collapse
Affiliation(s)
| | - Meera Indracanti
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Suresh K Kalangi
- Amity Stem Cell Institute, Amity University Haryana, Amity Education Valley Pachgaon, Manesar, Gurugram, HR 122413 India
| | - B Meher Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Navya G Naidu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
9
|
Arslan AA, Tuminello S, Yang L, Zhang Y, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Shao Y, Reibman J. Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155493. [PMID: 32751422 PMCID: PMC7432006 DOI: 10.3390/ijerph17155493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
The primary goal of this pilot study was to assess feasibility of studies among local community members to address the hypothesis that complex exposures to the World Trade Center (WTC) dust and fumes resulted in long-term epigenetic changes. We enrolled 18 WTC-exposed cancer-free women from the WTC Environmental Health Center (WTC EHC) who agreed to donate blood samples during their standard clinical visits. As a reference WTC unexposed group, we randomly selected 24 age-matched cancer-free women from an existing prospective cohort who donated blood samples before 11 September 2001. The global DNA methylation analyses were performed using Illumina Infinium MethylationEpic arrays. Statistical analyses were performed using R Bioconductor package. Functional genomic analyses were done by mapping the top 5000 differentially expressed CpG sites to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database. Among cancer-free subjects, we observed substantial methylation differences between WTC-exposed and unexposed women. The top 15 differentially methylated gene probes included BCAS2, OSGIN1, BMI1, EEF1A2, SPTBN5, CHD8, CDCA7L, AIDA, DDN, SNORD45C, ZFAND6, ARHGEF7, UBXN8, USF1, and USP12. Several cancer-related pathways were enriched in the WTC-exposed subjects, including endocytosis, mitogen-activated protein kinase (MAPK), viral carcinogenesis, as well as Ras-associated protein-1 (Rap1) and mammalian target of rapamycin (mTOR) signaling. The study provides preliminary data on substantial differences in DNA methylation between WTC-exposed and unexposed populations that require validation in further studies.
Collapse
Affiliation(s)
- Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Correspondence:
| | - Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Lei Yang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| |
Collapse
|
10
|
Bansal R, Nayak BB, Bhardwaj S, Vanajakshi CN, Das P, Somayaji NS, Sharma S. Cancer stem cells and field cancerization of head and neck cancer - An update. J Family Med Prim Care 2020; 9:3178-3182. [PMID: 33102266 PMCID: PMC7567290 DOI: 10.4103/jfmpc.jfmpc_443_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 05/25/2020] [Indexed: 12/01/2022] Open
Abstract
Oral cancer results due to multiple genetic alterations that transform the normal cells in the oral cavity into neoplastic cells. These genetic changes in a particular tumor field lead to a rapid expansion of preneoplastic daughter cells producing malignant phenotype but the malignancy results due to such genetic changes occurr over several years. The morphological changes in these transformed cells help in the diagnosis of malignancy. Thus, the early changes at the gene level are present in the population of daughter cells in the organ, which explains the concept of field cancerization. Cancer stem cells (CSCs) represent a group of cells that have the capacity of self-renewal and have the potential to differentiate into other types of tumor cells. This review explains the cellular and genetic basis of field cancerization and the role of cancer stem cells in field cancerization.
Collapse
Affiliation(s)
- Richa Bansal
- Reader, Department of Oral Pathology and Microbiology, Seema Dental College and Hospital, Rishikesh, Uttrakhand, India
| | - Bikash Bishwadarshee Nayak
- Senior Lecturer, Department of Oral Medicine and Radiology, Hi Tech Dental College and Hospital, Bhubaneswar, India
| | | | - C N Vanajakshi
- Reader, Sree Sai Dental College and Research Institution, Chapuram, Srikakulm District, Andhra Pradesh, India
| | - Pragyan Das
- Senior Lecturer, Department of Oral Medicine and Radiology, Awadh Dental College and Hospital, Jamshedpur, Jharkhand, India
| | - Nagaveni S Somayaji
- Reader, Department of Prosthodontics, Crown and Bridge, Hi-Tech Dental College and Hospital, Bhubaneswar, India
| | - Sonika Sharma
- Private Practitioner and Consultant Oral Pathologist, New Delhi, India
| |
Collapse
|