1
|
Fan HY, Zhao MD, Jiang HJ, Yu ZW, Fan YJ, Liang XH, Tang YL, Sun Y. Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma. Acta Pharm Sin B 2024; 14:2748-2760. [PMID: 38828155 PMCID: PMC11143742 DOI: 10.1016/j.apsb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 06/05/2024] Open
Abstract
Circular RNAs (circRNAs) are ideal biomarkers of oral squamous cell carcinoma (OSCC) because of their highly stable closed-loop structure, and they can act as microRNA (miRNA) sponges to regulate OSCC progression. By analyzing clinical samples, we identified circCPNE1, a dysregulated circRNA in OSCC, and its expression level was negatively correlated with the clinical stage of OSCC patients. Gain-of-function assays revealed the tumor-suppressive effect of circCPNE1, which was then identified as a miR-330-3p sponge. MiR-330-3p was recognized as a tumor promoter in multiple studies, consistent with our finding that it could promote the proliferation, migration, and invasion of OSCC cells. These results indicated that selective inhibition of miR-330-3p could be an effective strategy to inhibit OSCC progression. Therefore, we designed cationic polylysine-cisplatin prodrugs to deliver antagomiR-330-3p (a miRNA inhibitory analog) via electrostatic interactions to form PP@miR nanoparticles (NPs). Paratumoral administration results revealed that PP@miR NPs effectively inhibited subcutaneous tumor progression and achieved partial tumor elimination (2/5), which confirmed the critical role of miR-330-3p in OSCC development. These findings provide a new perspective for the development of OSCC treatments.
Collapse
Affiliation(s)
- Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ming-da Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hong-jie Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen-wei Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-jiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Dong H, Yang C, Chen X, Sun H, He X, Wang W. Breast cancer-derived exosomal lncRNA SNHG14 induces normal fibroblast activation to cancer-associated fibroblasts via the EBF1/FAM171A1 axis. Breast Cancer 2023; 30:1028-1040. [PMID: 37653187 DOI: 10.1007/s12282-023-01496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Exosomes released from cancer cells can activate normal fibroblasts (NFs) into cancer-associated fibroblasts (CAFs), which promotes cancer development. Our study aims to explore the role and potential mechanisms of breast cancer exosomes-delivered long non-coding RNA (lncRNA) SNHG14 in regulating CAFs transformation. METHODS Adjacent normal tissues, cancerous and serum specimens were gathered in breast cancer patients. Exosomes and NFs were separated from breast cancer cells (SKBR-3) and normal tissues of patients, respectively. Cell viability and migration were measured with CCK-8 and Transwell assays. CAFs markers, fibroblast activation protein (FAP) and a-smooth muscle actin (α-SMA) were detected for assessing CAFs activation. The interactions between molecules were evaluated using dual luciferase reporter assay, RNA immunoprecipitation and chromatin immunoprecipitation. RESULTS SNHG14 and FAM171A1 were upregulated in breast cancer. Exosomes secreted by SKBR-3 cells induced NFs activation in CAFs, as indicated by upregulating CAFs marker levels and facilitated cell viability and migration. Exosomal SNHG14 silencing in SKBR-3 cells inhibited CAFs activation. SNHG14 positively regulated FAM171A1 expression through EBF1. FAM171A1 overexpression eliminated the inhibition effect of exosomal SNHG14 silencing in CAFs transformation. CONCLUSION Breast cancer-derived exosomal SNHG14 contributed to NFs transformation into CAFs by the EBF1/FAM171A1 axis.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Changcheng Yang
- Department of Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan Province, People's Republic of China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
4
|
Chen J, Wang L, Ma D, Zhang H, Fan J, Gao H, Xia X, Wu W, Shi Y. miR-19a may function as a biomarker of oral squamous cell carcinoma (OSCC) by regulating the signaling pathway of miR-19a/GRK6/GPCRs/PKC in a Chinese population. J Oral Pathol Med 2023; 52:971-979. [PMID: 37706561 DOI: 10.1111/jop.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In this study, we aimed to investigate the potential of miR-19a as a biomarker of OSCC and its underlying molecular mechanisms. METHODS We collected serum and saliva samples from 66 OSCC patients and 66 healthy control subjects. Real-time PCR analysis, bioinformatic analysis and luciferase assays were performed to establish a potential signaling pathway of miR-19a/GRK6/GPCRs/PKC. Flowcytometry and Transwell assays were performed to observe the changes in cell apoptosis, metastasis and invasion. RESULTS We found that miR-19a, GPR39 mRNA and PKC mRNA were upregulated while GRK6 mRNA was downregulated in the serum and saliva samples collected from OSCC patients. Moreover, in silico analysis confirmed a potential binding site of miR-19a on the 3'UTR of GRK6 mRNA, and the subsequent luciferase assays confirmed the molecular binding between GRK6 and miR-19a. We further identified that the over-expression of miR-19a could regulate the signaling between GRK6, GPR39 and PKC via the signaling pathway of miR-19a/GRK6/GPR39/PKC, which accordingly resulted in suppressed cell apoptosis and promoted cell migration and invasion. CONCLUSION Collectively, the findings of our study propose that miR-19a is a crucial mediator in the advancement of OSCC, offering a potential avenue for the development of innovative therapeutic interventions aimed at regulating GRK6 and its downstream signaling pathways.
Collapse
Affiliation(s)
- Jijun Chen
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Liang Wang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Danhua Ma
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - He Zhang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jiayan Fan
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Hongyan Gao
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Xinyu Xia
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Wei Wu
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yuyuan Shi
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Song C, Zhen J, Wang Y, Zhang L. Early B Cytokine 1 Improves the Proliferation, Invasion and Migration of Ovarian Cancer Cells by Transcriptional Inhibition of the Expression of Cripto-1. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer is a common malignant tumor in obstetrics and gynecology and its pathogenesis is complex. EBF1 expression is significantly decreased in ovarian cancer tissues, but its specific mechanism in ovarian cancer has not been studied. In this study, GEPIA website predicted the
expression of EBF1 in ovarian cancer tissues. Expression of EBF1 in ovarian cancer cells was detected by RT-qPCR and western blot. CCK-8 and clone formation assay were used to detect the cell proliferation level. Wound healing and Transwell assays detected the levels of cell invasion and migration.
Western blot was used to detect the expression of migration-related proteins. Cell transfection techniques were used to overexpress or reduce the expression levels of EBF1 and Cripto-1. Luciferase assay was used to detect the transcriptional activity of Cripto-1 promoter mutant in ovarian
cancer cells. ChIP assay was used to verify the combination of EBF1 and the E1 element of the Cripto-1 promoter. The results showed that the expression of EBF1 was down-regulated in all ovarian cancer cell lines. Overexpression of EBF1 can inhibit the proliferation, invasion and migration
of ovarian cancer cells, which is achieved by inhibiting the expression of Cripto-1. Overall, EBF1 improved the malignant progression of ovarian cancer cells by transcriptional inhibition of the expression of Cripto-1.
Collapse
Affiliation(s)
- Chunhong Song
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Juan Zhen
- Department of Pathology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050011, Hebei, China
| | - Ying Wang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Longying Zhang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| |
Collapse
|
6
|
Wei W, Liu C, Wang M, Jiang W, Wang C, Zhang S. Prognostic Signature and Tumor Immune Landscape of N7-Methylguanosine-Related lncRNAs in Hepatocellular Carcinoma. Front Genet 2022; 13:906496. [PMID: 35938009 PMCID: PMC9354608 DOI: 10.3389/fgene.2022.906496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Despite great advances in the treatment of liver hepatocellular carcinoma (LIHC), such as immunotherapy, the prognosis remains extremely poor, and there is an urgent need to develop novel diagnostic and prognostic markers. Recently, RNA methylation-related long non-coding RNAs (lncRNAs) have been demonstrated to be novel potential biomarkers for tumor diagnosis and prognosis as well as immunotherapy response, such as N6-methyladenine (m6A) and 5-methylcytosine (m5C). N7-Methylguanosine (m7G) is a widespread RNA modification in eukaryotes, but the relationship between m7G-related lncRNAs and prognosis of LIHC patients as well as tumor immunotherapy response is still unknown. In this study, based on the LIHC patients' clinical and transcriptomic data from TCGA database, a total of 992 m7G-related lncRNAs that co-expressed with 22 m7G regulatory genes were identified using Pearson correlation analysis. Univariate regression analysis was used to screen prognostic m7G-related lncRNAs, and the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were applied to construct a 9-m7G-related-lncRNA risk model. The m7G-related lncRNA risk model was validated to exhibit good prognostic performance through Kaplan-Meier analysis and ROC analysis. Together with the clinicopathological features, the m7G-related lncRNA risk score was found to be an independent prognostic factor for LIHC. Furthermore, the high-risk group of LIHC patients was unveiled to have a higher tumor mutation burden (TMB), and their tumor microenvironment was more prone to the immunosuppressive state and exhibited a lower response rate to immunotherapy. In addition, 47 anti-cancer drugs were identified to exhibit a difference in drug sensitivity between the high-risk and low-risk groups. Taken together, the m7G-related lncRNA risk model might display potential value in predicting prognosis, immunotherapy response, and drug sensitivity in LIHC patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Caihong Wang
- Department of Pathology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Ding S, Wang X, Lv D, Tao Y, Liu S, Chen C, Huang Z, Zheng S, Wei Y, Kang T, Xia Y. EBF3 reactivation by inhibiting the EGR1/EZH2/HDAC9 complex promotes metastasis via transcriptionally enhancing vimentin in nasopharyngeal carcinoma. Cancer Lett 2021; 527:49-65. [PMID: 34906623 DOI: 10.1016/j.canlet.2021.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 01/31/2023]
Abstract
Metastasis is the major reason for treatment failure and accounts for cancer-related death in patients with nasopharyngeal carcinoma. However, the genetic alterations and molecular mechanisms that cause nasopharyngeal carcinoma metastasis are elusive. Herein, we performed RNA sequencing in patients with or without metastasis, and found that the early B-cell factor 3 (EBF3) was significantly elevated in the samples with metastasis. Mechanistically, EBF3 promoted metastasis by directly combining with the promoter of Vimentin and transcriptionally upregulating it. In addition, EBF3 was epigenetically silenced by EGR1/EZH2/HDAC9 complexes via sustaining the high level of H3K27-Me3 at its promoter. Clinically, there was a positive correlation between EBF3 and Vimentin in nasopharyngeal carcinoma tissues. Moreover, high expression of EBF3 or Vimentin was correlated with poor overall survival, while the combination of high EBF3 and Vimentin expression was associated with more significant poor prognosis. Therefore, specific agents targeting EBF3 or stabilizing the EGR1/EZH2/HDAC9 complex could be novel therapeutic strategies for cancer metastasis.
Collapse
Affiliation(s)
- Shirong Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; The Department of Liver Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Songran Liu
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zilu Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Shuohan Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yinghong Wei
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yunfei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| |
Collapse
|
8
|
Xu H, Wang X, Zhang Y, Zheng W, Zhang H. GATA6-AS1 inhibits ovarian cancer cell proliferation and migratory and invasive abilities by sponging miR-19a-5p and upregulating TET2. Oncol Lett 2021; 22:718. [PMID: 34429758 PMCID: PMC8371982 DOI: 10.3892/ol.2021.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
GATA6 antisense RNA 1 (GATA6-AS1) has been reported to be involved in the progression of several types of cancer. In the present study, the role of GATA6-AS1 in ovarian cancer (OC) was explored. Reverse transcription quantitative PCR was used to detect the expression of GATA6-AS1, microRNA (miR)-19a-5p and tet methylcytosine dioxygenase 2 (TET2) in OC and adjacent normal tissues. Furthermore, OC cells with GATA-AS1 either knocked down or overexpressed were established. The Cell Counting Kit-8 assay was used to evaluate cell proliferation and a Transwell assay was used to assess the migratory and invasive abilities of OC cells. A dual luciferase reporter gene assay was used to determine whether GATA6-AS1 and miR-19a-5p, and miR-19a-5p and TET2, may interact with each other. The results demonstrated that GATA6-AS1 expression level was decreased in OC tissues and cells compared with control groups. In addition, GATA6-AS1 overexpression significantly inhibited the proliferation and migratory and invasive abilities of OC cells, whereas GATA6-AS1 downregulation had the opposite effects. Furthermore, GATA6-AS1 adsorbed miR-19a-5p to repress its expression and GTA6-AS1 indirectly upregulated TET2 expression. Taken together, the findings from this study suggested that GATA6-AS1 could inhibit the proliferation and migratory and invasive abilities of OC cells via regulation of the miR-19a-5p/TET2 axis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiao Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yinghong Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wei Zheng
- Department of Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
9
|
Lei CS, Kung HJ, Shih JW. Long Non-Coding RNAs as Functional Codes for Oral Cancer: Translational Potential, Progress and Promises. Int J Mol Sci 2021; 22:4903. [PMID: 34063159 PMCID: PMC8124393 DOI: 10.3390/ijms22094903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is one of the leading malignant tumors worldwide. Despite the advent of multidisciplinary approaches, the overall prognosis of patients with oral cancer is poor, mainly due to late diagnosis. There is an urgent need to develop valid biomarkers for early detection and effective therapies. Long non-coding RNAs (lncRNAs) are recognized as key elements of gene regulation, with pivotal roles in various physiological and pathological processes, including cancer. Over the past few years, an exponentially growing number of lncRNAs have been identified and linked to tumorigenesis and prognosis outcomes in oral cancer, illustrating their emerging roles in oral cancer progression and the associated signaling pathways. Herein, we aim to summarize the most recent advances made concerning oral cancer-associated lncRNA, and their expression, involvement, and potential clinical impact, reported to date, with a specific focus on the lncRNA-mediated molecular regulation in oncogenic signaling cascades and oral malignant progression, while exploring their potential, and challenges, for clinical applications as biomarkers or therapeutic targets for oral cancer.
Collapse
Affiliation(s)
- Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
10
|
Xie Y, Zhang J, Lu B, Bao Z, Zhao J, Lu X, Wei Y, Yao K, Jiang Y, Yuan Q, Zhang X, Li B, Chen X, Dong Z, Liu K. Mefloquine Inhibits Esophageal Squamous Cell Carcinoma Tumor Growth by Inducing Mitochondrial Autophagy. Front Oncol 2020; 10:1217. [PMID: 32850358 PMCID: PMC7400730 DOI: 10.3389/fonc.2020.01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) has a worldwide impact on human health, due to its high incidence and mortality. Therefore, identifying compounds to increase patients' survival rate is urgently needed. Mefloquine (MQ) is an FDA-approved anti-malarial drug, which has been reported to inhibit cellular proliferation in several cancers. However, the anti-tumor activities of the drug have not yet been completely defined. In this study, mass spectrometry was employed to profile proteome changes in ESCC cells after MQ treatment. Sub-cellular localization and gene ontology term enrichment analysis suggested that MQ treatment mainly affect mitochondria. The KEGG pathway enrichment map of down-regulated pathways and Venn diagram indicated that all of the top five down regulated signaling pathways contain four key mitochondrial proteins (succinate dehydrogenase complex subunit C (SDHC), succinate dehydrogenase complex subunit D, mitochondrially encoded cytochrome c oxidase III and NADH: ubiquinone oxidoreductase subunit V3). Meanwhile, mitochondrial autophagy was observed in MQ-treated KYSE150 cells. More importantly, patient-derived xenograft mouse models of ESCC with SDHC high expression were more sensitive to MQ treatment than low SDHC-expressing xenografts. Taken together, mefloquine inhibits ESCC tumor growth by inducing mitochondrial autophagy and SDHC plays a vital role in MQ-induced anti-tumor effect on ESCC.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Xianyu Lu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Yaxing Wei
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Ke Yao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xiaofan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, AMS, Zhengzhou University, Zhengzhou, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|