1
|
Zhuang J, Yan J, Zhai S, Lin P, Jiang D, Huang W, Huang J. Regulation mechanism of chemokine CXCL3 in nasopharyngeal carcinoma. Pathol Res Pract 2025; 270:155978. [PMID: 40239601 DOI: 10.1016/j.prp.2025.155978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/07/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Nasopharyngeal carcinoma (NPC), a malignancy arising from the nasopharyngeal mucosal epithelium, remains poorly understood at molecular level. This study identifies CXCL3, a chemokine, as a critical oncogenic driver in NPC through multi-dataset transcriptomic analysis (GSE12452, GSE53819 and GSE61218). CXCL3 was identified to be upregulated in NPC tissues and correlated with tumor progression (P = 0.022) and poor prognosis. Immune infiltration analysis revealed its association with mast cell accumulation and immunosuppressive checkpoints (CD200, CD44 and CD70). Gene Set Enrichment Analysis (GSEA) linked CXCL3 to ECM-receptor-interaction, JAK-STAT and MAPK pathways. Functional assays demonstrated that CXCL3 silencing suppressed the SUNE-1 cells proliferation (P < 0.01), migration, and invasion abilities (P < 0.05), induced G2/M-phase arrest and reduced S-phase populations via MAPK/ERK pathway inhibition (p-ERK1/2, p-P38 and p-STAT3 down-regulated). Immunohistochemistry confirmed elevated CXCL3 expression in NPC tissues (approximately 80 % positivity) versus normal controls (100 % negative). Notably, CXCL3 knockdown impaired tubule formation in vitro, implicating its role in vascular remodeling. These findings establish CXCL3 as a multifaceted regulator of NPC progression through immune microenvironment modulation, MAPK/ERK signaling, and angiogenesis, nominating it as a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Jiafeng Zhuang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiecheng Yan
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shumin Zhai
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Peixin Lin
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Danxian Jiang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Weiyuan Huang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Jing Huang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Wang J, Cui Z, Song Q, Yang K, Chen Y, Peng S. Integrating single-cell RNA-seq and bulk RNA-seq to construct a neutrophil prognostic model for predicting prognosis and immune response in oral squamous cell carcinoma. Hum Genomics 2024; 18:140. [PMID: 39726033 DOI: 10.1186/s40246-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with poor prognosis. Neutrophil infiltration has been associated with unfavorable outcomes in OSCC, but the underlying molecular mechanisms remain unclear. METHODS This study integrated single-cell transcriptomics (scRNA-seq) with bulk RNA-seq data to analyze neutrophil infiltration patterns in OSCC and identify key gene modules using weighted gene co-expression network analysis (hdWGCNA). A prognostic model was developed based on univariate and Lasso-Cox regression analyses, stratifying patients into high- and low-risk groups. Immune landscape and drug sensitivity analyses were conducted to explore group-specific differences. Additionally, Mendelian randomization analysis was employed to identify genes causally related to OSCC progression. RESULTS Several key pathways associated with neutrophil interactions in OSCC progression were identified, leading to the construction of a prognostic model based on significant module genes. The model demonstrated strong predictive performance in distinguishing survival rates between high- and low-risk groups. Immune landscape analysis revealed significant differences in cell infiltration patterns and TIDE scores between the groups. Drug sensitivity analysis highlighted differences in drug responsiveness between high- and low-risk groups. CONCLUSION This study elucidates the critical role of neutrophils and their associated gene modules in OSCC progression. The prognostic model provides a novel reference for patient stratification and targeted therapy. These findings offer potential new targets for OSCC diagnosis, prognosis, and immunotherapy.
Collapse
Affiliation(s)
- Jinhang Wang
- Department of Stomatology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zifeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiwen Song
- Department of Stomatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanping Chen
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shixiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
Ren H, Yang X, Hou W, Meng J, Luo D, Zhang C. Comprehensive analysis of the clinical and biological significances for chemokine CXCL3 in cholangiocarcinoma. Medicine (Baltimore) 2024; 103:e37460. [PMID: 38489741 PMCID: PMC10939667 DOI: 10.1097/md.0000000000037460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Cholangiocarcinoma (CHOL) is a race malignant cancer arising from bile duct epithelial cells in clinical practice. C-X-C motif chemokine ligand 3 (CXCL3) is a member of chemokines family, which participates in the pathogenesis of various tumors. However, the association between CXCL3 and CHOL is unclear. This present study was to assess the role of CXCL3 expression in the progress of CHOL. TIMER, GEPIA, UALCAN, GSCA, LinkedOmics, Metascape and STRING databases were performed to evaluate the clinical and biological significances for CXCL3 with CHOL patients including expression, clinicopathological factors, immune cell infiltration, GO enrichment and KEGG pathway analyses, as well as PPI network analysis. The immunohistochemistry analysis of tissue microarray was conducted to detect the protein expression level, subcellular localization, clinicopathological factors and prognosis of CXCL3 in CHOL. The mRNA and protein expression levels of CXCL3 were markedly increased in CHOL tissues. The overexpression of CXCL3 was strongly associated with maximum tumor diameter of patients with CHOL. Additionally, there were negative correlations between the expression of CXCL3 and monocyte as well as Th17. Low infiltration of neutrophil indicated significantly shorter cumulative survival in CHOL patients. And CXCL3 was significantly associated with arm-level deletion of CD8+ T cell. Furthermore, functional network analysis suggested that CXCL3 and its associated genes were mainly enriched for chemotaxis, secretory granule membrane, cytokine activity and IL-17 signaling pathway. CXCL3 might potentially participate in the carcinogenesis of CHOL, which provided a direction for future research on the mechanism of CXCL3 in CHOL.
Collapse
Affiliation(s)
- Hongyue Ren
- Basic Medical College, Zhangzhou Health Vocational College, Zhangzhou, Fujian Province, China
| | - Xiaofan Yang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Wenrong Hou
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Jiarong Meng
- Department of Pathology, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, Fujian Province, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, Fujian Province, China
| | - Chunbin Zhang
- Basic Medical College, Zhangzhou Health Vocational College, Zhangzhou, Fujian Province, China
- Medical Technology College, Zhangzhou Health Vocational College, Zhangzhou, Fujian Province, China
| |
Collapse
|
5
|
Fernandez-Avila L, Castro-Amaya AM, Molina-Pineda A, Hernández-Gutiérrez R, Jave-Suarez LF, Aguilar-Lemarroy A. The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as Potential Prognosis Markers in Cervical Cancer: Evidence of E6/E7 from HPV16 and 18 in Chemokines Regulation. Biomedicines 2023; 11:2655. [PMID: 37893029 PMCID: PMC10604789 DOI: 10.3390/biomedicines11102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cervical cancer (CC) is a serious global health issue, and it is well-known that HPV infection is the main etiological factor that triggers carcinogenesis. In cancer, chemokine ligands and receptors are involved in tumor cell growth, metastasis, leukocyte infiltration, and angiogenesis; however, information on the role played by E6/E7 of HPV16/18 in the modulation of chemokines is very limited. Therefore, this study aimed to determine whether chemokines are differentially expressed in CC-derived cell lines; if E6/E7 oncoproteins from HPV16 and 18 are capable of mediating chemokine expression, what is the expression profile of chemokines in tissues derived from CC and what is their impact on the overall survival of patients with this pathology? For this purpose, RNA sequencing and real-time PCR were performed on SiHa, HeLa, and C33A tumorigenic cell lines, on the non-tumorigenic HaCaT cells, and the E6/E7 HPV-transduced HaCaT cell models. Furthermore, chemokine expression and survival analysis were executed on 304 CC and 22 normal tissue samples from The Cancer Genome Atlas (TCGA) repository. The results demonstrate that CXCL1, CXCL2, CXCL3, and CXCL8 are regulated by E6/E7 of HPV16 and 18, are overexpressed in CC biopsies, and that their higher expression is related to a worse prognostic survival.
Collapse
Affiliation(s)
- Leonardo Fernandez-Avila
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Aribert Maryosly Castro-Amaya
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Andrea Molina-Pineda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (A.M.-P.); (R.H.-G.)
- Consejo Nacional de Ciencia y Tecnología, CONAHCYT, Mexico City 03940, Mexico
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (A.M.-P.); (R.H.-G.)
| | - Luis Felipe Jave-Suarez
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Adriana Aguilar-Lemarroy
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
6
|
He X, Wang L, Li H, Liu Y, Tong C, Xie C, Yan X, Luo D, Xiong X. CSF2 upregulates CXCL3 expression in adipocytes to promote metastasis of breast cancer via the FAK signaling pathway. J Mol Cell Biol 2023; 15:mjad025. [PMID: 37073091 PMCID: PMC10686244 DOI: 10.1093/jmcb/mjad025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Recent studies have demonstrated that cancer-associated adipocytes (CAAs) in the tumor microenvironment are involved in the malignant progression of breast cancer. However, the underlying mechanism of CAA formation and its effects on the development of breast cancer are still unknown. Here, we show that CSF2 is highly expressed in both CAAs and breast cancer cells. CSF2 promotes inflammatory phenotypic changes of adipocytes through the Stat3 signaling pathway, leading to the secretion of multiple cytokines and proteases, particularly C-X-C motif chemokine ligand 3 (CXCL3). Adipocyte-derived CXCL3 binds to its specific receptor CXCR2 on breast cancer cells and activates the FAK pathway, enhancing the mesenchymal phenotype, migration, and invasion of breast cancer cells. In addition, a combination treatment targeting CSF2 and CXCR2 shows a synergistic inhibitory effect on adipocyte-induced lung metastasis of mouse 4T1 cells in vivo. These findings elucidate a novel mechanism of breast cancer metastasis and provide a potential therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Honghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Pediatric Medical School, Nanchang University, Nanchang 330031, China
| | - Caifeng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
- Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China
| |
Collapse
|
7
|
Liao L, Liu M, Gao Y, Wei X, Yin Y, Gao L, Zhou R. The long noncoding RNA TARID regulates the CXCL3/ERK/MAPK pathway in trophoblasts and is associated with preeclampsia. Reprod Biol Endocrinol 2022; 20:159. [PMID: 36401313 PMCID: PMC9675252 DOI: 10.1186/s12958-022-01036-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The widely accepted explanation of preeclampsia (PE) pathogenesis is insufficient trophoblast invasion and impaired uterine spiral artery remodeling. However, the underlying molecular mechanism remains unclear. METHODS We performed transcriptome sequencing on placentas of normal and PE patients and identified 976 differentially expressed long noncoding RNAs (lncRNAs). TCF21 antisense RNA inducing demethylation (TARID) was one of the most significantly differentially expressed lncRNAs and was negatively correlated with the systolic and diastolic blood pressure in PE patients. Furthermore, we verified the effect of TARID on the biological behavior of trophoblasts and performed UID mRNA-seq to identify the effectors downstream of TARID. Then, co-transfection experiments were used to better illustrate the interaction between TARID and its downstream effector. RESULTS We concluded that the downregulation of TARID expression may inhibit trophoblast infiltration and spiral artery remodeling through inhibition of cell migration, invasion, and tube formation mediated through the CXCL3/ERK/MAPK pathway. CONCLUSIONS Overall, these findings suggested that TARID may be a therapeutic target for PE through the CXCL3/ERK/MAPK pathway.
Collapse
Affiliation(s)
- Lingyun Liao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Min Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yijie Gao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Xiaohong Wei
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Yangxue Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zhu L, Zhang Y, Li Y, Wang H, Shen G, Wang Z. Inhibitory effect of lingonberry extract on HepG2 cell proliferation, apoptosis, migration, and invasion. PLoS One 2022; 17:e0270677. [PMID: 35802745 PMCID: PMC9269931 DOI: 10.1371/journal.pone.0270677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) extract contains various active ingredients with strong inhibitory effects on cancer cell growth. HepG2 cells were treated with various concentrations of lingonberry extract, cell inhibition rate was measured by CCK-8 assay, and apoptosis rate by annexin-propidium iodide double-staining assay. The cell cycle was analyzed by flow cytometry, and cell migration and invasion by transwell assay. Real-time reverse transcription-PCR and western blotting were employed to analyze the expression of C-X-C motif chemokine ligand 3 (CXCL3). Ki-67, TUNEL, and transwell assays were used to verify the relationship between CXCL3 expression and cell proliferation, apoptosis, migration, and invasion. The composition of lingonberry extract was: 37.58% cyanidin-3-O-glucoside, 10.96% kaempferol 3-O-arabinoside, 4.52% epicatechin, 4.35% chlorogenic acid, 3.83% catechinic acid, 1.54% isoquercitrin, 1.05% 4-hydroxycinnamon acid, 1.03% cyanidin chloride, 0.85% 2,3-dihydroxybenzoic acid, 0.55% quercetin, 0.36% D-(-)-quininic acid, 0.96% caffeic acid, 0.16% ferulic acid, 0.12% oleanolic acid, and 0.03% ursolic acid. Lingonberry extract inhibited the proliferation of HepG2 cells in a dose-dependent manner. After 48 h exposure to 100 μg/mL extract the inhibition rate and IC50 were 80.89±6.05% and 22.62 μg/mL, respectively. Lingonberry extract promoted late apoptosis in HepG2 cells and arrested the cell cycle at G2/M and S phases. Lingonberry extract also promoted the apoptosis of HepG2 cancer cells, inhibiting their proliferation, migration, and invasion by regulating the expression of CXCL3. This study offers new insight into the antihepatoma activity of lingonberry extract and provides a basis for the development of pilot antitumor drugs.
Collapse
Affiliation(s)
- Liangyu Zhu
- School of Forestry, Northeast Forestry University, Harbin, China
- Heilongjiang Academy of Sciences Institute of Natural Resources and Ecology, Harbin, China
| | - Yandong Zhang
- School of Food Science and Engineering, Harbin Institute of Technology University, Harbin, China
| | - Yongchun Li
- College of Chemistry and Life Science, Chifeng University, Chifeng, China
| | - Hua Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Guang Shen
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhenyu Wang
- School of Food Science and Engineering, Harbin Institute of Technology University, Harbin, China
- * E-mail:
| |
Collapse
|
9
|
Kondoh N, Mizuno-Kamiya M. The Role of Immune Modulatory Cytokines in the Tumor Microenvironments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2022; 14:cancers14122884. [PMID: 35740551 PMCID: PMC9221278 DOI: 10.3390/cancers14122884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Malignant phenotypes of head and neck squamous cell carcinomas (HNSCCs) are regulated by the pro- and anti-tumoral activities of immune modulatory cytokines associated with tumor microenvironments (TMEs). We first present the immune modulatory effects of pro-inflammatory cytokines, pro- and anti- (pro-/anti-) inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. We then report our evaluation of the functions of cytokines and chemokines that mediate the crosstalk between tumors and stromal cells, including cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), and tumor-associated macrophages (TAMs). In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. Several chemokines mediate lymph node metastases in HNSCC patients. There are therapeutic approaches, using antitumoral cytokines or immunotherapies, that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. Finally, modulation by human papilloma virus (HPV) infection in HNSCC phenotypes and the prognostic significance of serum cytokine levels in HNSCC patients are discussed. Abstract HNSCCs are the major progressive malignancy of the upper digestive and respiratory organs. Malignant phenotypes of HNSCCs are regulated by the pro- and anti-tumoral activities of the immune modulatory cytokines associated with TMEs, i.e., a representative pro-inflammatory cytokine, interferon (IFN)-γ, plays a role as an anti-tumor regulator against HNSCCs; however, IFN-γ also drives programmed death-ligand (PD-L) 1 expression to promote cancer stem cells. Interleukin (IL)-2 promotes the cytotoxic activity of T cells and natural killer cells; however, endogenous IL-2 can promote regulatory T cells (Tregs), resulting in the protection of HNSCCs. In this report, we first classified and mentioned the immune modulatory aspects of pro-inflammatory cytokines, pro-/anti-inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. In the TME of HNSCCs, pro-tumoral immune modulation is mediated by stromal cells, including CAFs, MDSCs, pDCs, and TAMs. Therefore, we evaluated the functions of cytokines and chemokines that mediate the crosstalk between tumor cells and stromal cells. In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. We therefore evaluated the possibility of chemokines mediating lymph node metastases in HNSCC patients. We also mention therapeutic approaches using anti-tumoral cytokines or immunotherapies that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. We finally discuss modulation by HPV infection upon HNSCC phenotypes, as well as the prognostic significance of serum cytokine levels in HNSCC patients.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho 501-0296, Gifu, Japan
- Correspondence: ; Tel.: +81-58-329-1416; Fax: +81-58-329-1417
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, Mizuho 501-0296, Gifu, Japan;
| |
Collapse
|