1
|
Humphries EM, Hains PG, Robinson PJ. Overlap of Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Matched Tissues for Proteomics and Phosphoproteomics. ACS OMEGA 2025; 10:6891-6900. [PMID: 40028131 PMCID: PMC11865994 DOI: 10.1021/acsomega.4c09289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Many liquid chromatography-mass spectrometry (LC-MS) studies have compared formalin-fixed paraffin-embedded (FFPE) tissues with matched fresh-frozen (FF) tissues to examine the effect of preservation techniques on the proteome; however, few studies have included the phosphoproteome. A high degree of overlap and correlation between the two preservation techniques would demonstrate the importance of FFPE tissues as a valuable biomedical resource. Our aim was to quantitatively compare the proteome and phosphoproteome of matched FFPE and FF tissues using data-independent acquisition LC-MS. Four organs from three rats were cut in half to produce matched FFPE and FF tissue pairs. Excellent overlaps of 85-97% for the proteome and 82-98% for the phosphoproteome were observed, depending on the organ type, between the two preservation techniques. Most of the unique identifications were found in FF with less than 0.3% being unique to FFPE tissues. Strong agreement between FFPE and FF matched tissue pairs was observed with Pearson correlation coefficients of 0.93-0.97 and 0.79-0.87 for the proteome and phosphoproteome, respectively. Digestion efficiency was slightly higher in FFPE (92-94%) than in FF tissues (86-89%), and a search of a data subset for formaldehyde induced chemical modifications revealed that only 0.05% of precursors were unique to FFPE tissues. This suggests that with quality sample preparation methods it is not necessary to include formaldehyde induced chemical modifications when analyzing FFPE tissues. We attribute the lower number of identifications in FFPE tissues to inaccurate peptide quantitation, which resulted in a lower MS peptide load and tryptic peptide enrichment load. Our results demonstrate that both proteomic and phosphoproteomic analyses of FFPE and FF tissues are highly comparable and highlight the suitability of FFPE tissues for both proteomic and phosphoproteomic analysis.
Collapse
Affiliation(s)
- Erin M. Humphries
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Peter G. Hains
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Phillip J. Robinson
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
2
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
3
|
Vitório JG, Duarte-Andrade FF, Pereira TDSF, Melo Braga MND, Canuto GAB, Macedo AND, Lebron YAR, Moreira VR, Felicori LF, Lange LC, Souza Santos LVD, Larsen MR, Gomes CC, Gomez RS. Integrated proteomics, phosphoproteomics and metabolomics analyses reveal similarities amongst giant cell granulomas of the jaws with different genetic mutations. J Oral Pathol Med 2022; 51:666-673. [PMID: 35706152 DOI: 10.1111/jop.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Giant cell granuloma of the jaws are benign osteolytic lesions of the jaws. These lesions are genetically characterized by mutually exclusive somatic mutations at TRPV4, KRAS, and FGFR1, and a fourth molecular subgroup which is wild-type for the three mutations. Irrespective of the molecular background, giant cell granulomas show MAPK/ERK activation. However, it remains unclear if these mutations lead to differences in their molecular signaling in giant cell granulomas. METHODS Metabolomics, proteomics and phosphoproteomics analyses were carried out in formalin-fixed paraffin-embedded samples of giant cell granuloma of the jaws. The study cohort consisted of five lesions harboring mutations in FGFR1, six in KRAS, five in TRPV4 and five that were wild-type for these mutations. RESULTS Lesions harboring KRAS or FGFR1 mutations showed overall similar proteomics and metabolomics profiles. In all four groups, metabolic pathways showed similarity in apoptosis, cell signaling, gene expression, cell differentiation and erythrocyte activity. Lesions harboring TRPV4 mutations showed a greater number of enriched pathways related to tissue architecture. On the other hand, the wild-type group presented increased number of enriched pathways related to protein metabolism compared to the other groups. CONCLUSION Despite some minor differences, our results revealed an overall similar molecular profile among the groups with different mutational profile at the metabolic, proteic and phosphopeptidic levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thais Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marcella Nunes de Melo Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Adriana Nori de Macedo
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Department of Sanitary and Environmental Engineering, Engineer School, Universidade Federal de Minas Gerais (UFMG),, Belo Horizonte, Brazil
| | - Victor Rezende Moreira
- Department of Department of Sanitary and Environmental Engineering, Engineer School, Universidade Federal de Minas Gerais (UFMG),, Belo Horizonte, Brazil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Department of Sanitary and Environmental Engineering, Engineer School, Universidade Federal de Minas Gerais (UFMG),, Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Department of Sanitary and Environmental Engineering, Engineer School, Universidade Federal de Minas Gerais (UFMG),, Belo Horizonte, Brazil
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Ide F, Sakamoto S, Miyazaki Y, Kikuchi K, Muramatsu T, Ito Y. Direct evidence supporting a periodontal ligament origin for central cemento-ossifying fibroma. J Oral Pathol Med 2022; 51:582-583. [PMID: 35610173 DOI: 10.1111/jop.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Fumio Ide
- Division of Oral Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Shinnichi Sakamoto
- Division of Oral Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Yuji Miyazaki
- Division of Oral Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Kentaro Kikuchi
- Division of Oral Pathology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan
| | - Yumi Ito
- Department of Diagnostic Pathology, Tsurumi University Dental Hospital, Yokohama, Japan
| |
Collapse
|