1
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
2
|
Li J, Zhu M, Qu H, Yang H, Li Q, Liu L, Jin L, Wu Y. The double-stranded RNA-dependent protein kinase inhibitor alleviates endoplasmic reticulum stress and alleviates sepsis-induced renal injury. J Toxicol Sci 2021; 46:445-451. [PMID: 34602529 DOI: 10.2131/jts.46.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is involved in inflammatory cytokine expression and disease pathogenesis in many conditions. The aim of this study was to explore the role of PKR in sepsis-induced renal tissue injury. Six-week-old C57BL/6J mice received PKR inhibitor (imoxin) and Endoplasmic reticulum (ER) inducer (tunicamycin) 2 hr prior to induction of inflammation via cecal ligation and puncture (CLP). Renal tissues were collected 24 hr after the CLP treatment and protein expression were assessed. The expression of creatinine (Cre) and blood urea nitrogen (BUN) in serum and inflammation factor in tissues was detected by ELISA, and the apoptosis of renal tissue was detected by TUNEL staining. PKR inhibitors reduce the expression of sepsis-induced ER stress in renal tissue, as well as the pathological changes and renal impairment in renal tissue. PKR inhibitors reduce the expression of sepsis-induced inflammatory response and sepsis-induced apoptosis in renal tissue by ER stress. In conclusion, PKR inhibitor alleviates ER stress and alleviates sepsis-induced renal injury.
Collapse
Affiliation(s)
- Jinghui Li
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Ming Zhu
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Hai Qu
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Heying Yang
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Qiuyu Li
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Lu Liu
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Lu Jin
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| | - Yujuan Wu
- Intensive Care Unit, Kunming Medical University Affiliated Yan'an Hospital, China
| |
Collapse
|
3
|
Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci Rep 2020; 10:19617. [PMID: 33184378 PMCID: PMC7665072 DOI: 10.1038/s41598-020-76824-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the most aggressive and fatal type of skin cancer due to being highly proliferative. Acetylsalicylic acid (ASA; Aspirin) and salicylic acid (SA) are ancient drugs with multiple applications in medicine. Here, we showed that ASA and SA present anticancer effects against a murine model of implanted melanoma. These effects were also validated in 3D- and 2D-cultured melanoma B16F10 cells, where the drugs promoted pro-apoptotic effects. In both in vivo and in vitro models, SA and ASA triggered endoplasmic reticulum (ER) stress, which culminates with the upregulation of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). These effects are initiated by ASA/SA-triggered Akt/mTOR/AMPK-dependent activation of nitric oxide synthase 3 (eNOS), which increases nitric oxide and reactive oxygen species production inducing ER stress response. In the end, we propose that ASA and SA instigate anticancer effects by a novel mechanism, the activation of ER stress.
Collapse
|
4
|
Zhang X, He N, Xing Y, Lu Y. Knockdown of GCN2 inhibits high glucose‐induced oxidative stress and apoptosis in retinal pigment epithelial cells. Clin Exp Pharmacol Physiol 2020; 47:591-598. [PMID: 31868938 DOI: 10.1111/1440-1681.13233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaohui Zhang
- Department of Ophthalmology The Second Affiliated Hospital Medical College Xi'an Jiaotong University Xi'an China
| | - Na He
- Department of Ophthalmology The Second Affiliated Hospital Medical College Xi'an Jiaotong University Xi'an China
| | - Yao Xing
- Department of Ophthalmology The Second Affiliated Hospital Medical College Xi'an Jiaotong University Xi'an China
| | - Ye Lu
- Department of Ophthalmology The Second Affiliated Hospital Medical College Xi'an Jiaotong University Xi'an China
| |
Collapse
|
5
|
Wang Y, Lei T, Yuan J, Wu Y, Shen X, Gao J, Feng W, Lu Z. GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Redox Biol 2018; 17:25-34. [PMID: 29660505 PMCID: PMC6006681 DOI: 10.1016/j.redox.2018.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/17/2023] Open
Abstract
The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2−/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2−/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity. GCN2 deficiency ameliorates doxorubicin-induced cardiac dysfunction. GCN2 promotes doxorubicin-induced cardiomyocyte apoptosis and oxidative stress. GCN2 decreases Bcl-2 and UCP2 expression via a CHOP dependent manner. Knockdown of UCP2 exacerbated doxorubicin-induced cell death and oxidative stress.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Tong Lei
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Yongguang Wu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China.
| |
Collapse
|
6
|
Baroni MD, Colombo S, Martegani E. Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:344-356. [PMID: 29992130 PMCID: PMC6035838 DOI: 10.15698/mic2018.07.640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications.
Collapse
Affiliation(s)
| | - Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| | - Enzo Martegani
- Dipartimento di Biotecnologie e Bioscienze, Università Milano Bicocca, 20126 Milano, Italy
| |
Collapse
|
7
|
Kim B, Kim J, Kim YS. Celecoxib induces cell death on non-small cell lung cancer cells through endoplasmic reticulum stress. Anat Cell Biol 2017; 50:293-300. [PMID: 29354301 PMCID: PMC5768566 DOI: 10.5115/acb.2017.50.4.293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme induced by various proinflammatory and mitogenic stimuli. Celecoxib is a selective inhibitor of COX-2 that have been shown to affect cell growth and apoptosis. Lung cancer cells expressing COX-2 is able to be a target of celecoxib, this study focuses on investigating that celecoxib induces apoptosis via endoplasmic reticulum (ER) stress on lung cancer cells. We investigated whether celecoxib induced apoptosis on non-small cell lung cancer cell line, A549 and H460. The 50 µM of celecoxib increased apoptotic cells and 100 µM of celecoxib significantly induced apoptosis. To check involvement of caspase cascade, pretreatment of z-VAD-fmk blocked celecoxib-induced apoptosis. However, caspase-3, -8, and -9 were not activated, but cleavage of non-classical caspase-4 was detected using western blot. As checking ER stress associated molecules, celecoxib did not increase expressions of growth arrest and DNA damage inducible protein 34, activating transcription factor 4, and spliced X-box binding protiens-1, but increase of both glucose-regulated protein 78 (GRP78) and C/EBP homologous transcription factor were detected. Salubrinal, inhibitor of eIF2 and siRNA for IRE1 did not alter celecoxib-induced apoptosis. Instead, celecoxib-induced apoptosis might be deeply associated with ER stress depending on GRP78 because siRNA for GRP78 enhanced apoptosis. Taken together, celecoxib triggered ER stress on lung cancer cells and celecoxib-induced apoptosis might be involved in both non-classical caspase-4 and GRP78.
Collapse
Affiliation(s)
- Bomi Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Jayoung Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan, Korea
| | - Yeong Seok Kim
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
8
|
Kinases of eIF2a Switch Translation of mRNA Subset during Neuronal Plasticity. Int J Mol Sci 2017; 18:ijms18102213. [PMID: 29065505 PMCID: PMC5666893 DOI: 10.3390/ijms18102213] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to other types of cells, neurons express the largest number of diverse mRNAs, including neuron-specific ones. This mRNA diversity is required for neuronal function, memory storage, maintenance and retrieval. Regulation of translation in neurons is very complicated and involves various proteins. Some proteins, implementing translational control in other cell types, are used by neurons for synaptic plasticity. In this review, we discuss the neuron-specific activity of four kinases: protein kinase R (PKR), PKR-like endoplasmic reticulum kinase (PERK), general control nonderepressible 2 kinase (GCN2), and heme-reguated eIF2α kinase (HRI), the substrate for which is α-subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α is necessary for the cell during stress conditions, such as lack of amino acids, energy stress or viral infection. We propose that, during memory formation, neurons use some mechanisms similar to those involved in the cellular stress. The four eIF2α kinases regulate translation of certain mRNAs containing upstream open reading frames (uORFs). These mRNAs encode proteins involved in the processes of long-term potentiation (LTP) or long-term depression (LTD). The review examines some neuronal proteins for which translation regulation by eIF2 was suggested and checked experimentally. Of such proteins, we pay close attention to protein kinase Mζ, which is involved in memory storage and regulated at the translational level.
Collapse
|
9
|
Mügge FLB, Silva AM. Aspirin metabolite sodium salicylate selectively inhibits transcriptional activity of ATF6α and downstream target genes. Sci Rep 2017; 7:9190. [PMID: 28835710 PMCID: PMC5569067 DOI: 10.1038/s41598-017-09500-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
In response to ER stress, activating transcription factor 6 (ATF6) traffics from ER to Golgi apparatus where it is activated by cleavage before being translocated as transcription factor to the cell nucleus. In this work we describe ATF6α as a newly target of the aspirin metabolite sodium salicylate (NaSal). NaSal treatment of cells induces increases in ATF6α mRNA and protein levels, but these events are not accompanied by ATF6 activation. Conversely, NaSal inhibited ATF6 transactivating activity elicited by various ER stress-inducing stimuli in different cell types. This resulted in reduced expression of a subset of ATF6α target genes. Mechanistically, exposure of cells to NaSal results in ATF6α trapping at the Golgi apparatus, thus preventing nuclear translocation. This study provides evidence that NaSal compound restrains the activity of ATF6α, thereby preventing activation of a specific subset of ER-stress responsive genes implicated in different cellular responses.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
10
|
The genetics of isoflurane-induced developmental neurotoxicity. Neurotoxicol Teratol 2016; 60:40-49. [PMID: 27989695 DOI: 10.1016/j.ntt.2016.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Neurotoxicity induced by early developmental exposure to volatile anesthetics is a characteristic of organisms across a wide range of species, extending from the nematode C. elegans to mammals. Prevention of anesthetic-induced neurotoxicity (AIN) will rely upon an understanding of its underlying mechanisms. However, no forward genetic screens have been undertaken to identify the critical pathways affected in AIN. By characterizing such pathways, we may identify mechanisms to eliminate isoflurane induced AIN in mammals. METHODS Chemotaxis in adult C. elegans after larval exposure to isoflurane was used to measure AIN. We initially compared changes in chemotaxis indices between classical mutants known to affect nervous system development adding mutants in response to data. Activation of specific genes was visualized using fluorescent markers. Animals were then treated with rapamycin or preconditioned with isoflurane to test effects on AIN. RESULTS Forty-four mutations, as well as pharmacologic manipulations, identified two pathways, highly conserved from invertebrates to humans, that regulate AIN in C. elegans. Activation of one stress-protective pathway (DAF-2 dependent) eliminates AIN, while activation of a second stress-responsive pathway (endoplasmic reticulum (ER) associated stress) causes AIN. Pharmacologic inhibition of the mechanistic Target of Rapamycin (mTOR) blocks ER-stress and AIN. Preconditioning with isoflurane prior to larval exposure also inhibited AIN. DISCUSSION Our data are best explained by a model in which isoflurane acutely inhibits mitochondrial function causing activation of responses that ultimately lead to ER-stress. The neurotoxic effect of isoflurane can be completely prevented by manipulations at multiple points in the pathways that control this response. Endogenous signaling pathways can be recruited to protect organisms from the neurotoxic effects of isoflurane.
Collapse
|
11
|
Su CC, Liu SH, Lee KI, Huang KT, Lu TH, Fang KM, Wu CC, Yen CC, Lai CH, Su YC, Huang CF. Cantharidin Induces Apoptosis Through the Calcium/PKC-Regulated Endoplasmic Reticulum Stress Pathway in Human Bladder Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:581-600. [PMID: 25967669 DOI: 10.1142/s0192415x15500366] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bladder cancer is a common malignancy worldwide. However, there is still no effective therapy for bladder cancer. In this study, we investigated the cytotoxic effects of cantharidin [a natural toxin produced (pure compound) from Chinese blister beetles (Mylabrisphalerata or Mylabriscichorii) and Spanish flies (Cantharis vesicatoria)] in human bladder cancer cell lines (including: T24 and RT4 cells). Treatment of human bladder cancer cells with cantharidin significantly decreased cell viability. The increase in the expressions of caspase-3 activity and cleaved form of caspase-9/-7/-3 were also increased in cantharidin-treated T24 cells. Furthermore, cantharidin increased the levels of phospho-eIF2α and Grp78 and decreased the protein expression of procaspase-12, which was accompanied by the increase in calpain activity in T24 cells. Cantharidin was capable of increasing the intracellular Ca 2+ and the phosphorylation of protein kinase C (PKC) in T24 cells. The addition of BAPTA/AM (a Ca 2+ chelator) and RO320432 (a selective cell-permeable PKC inhibitor) effectively reversed the increase in caspase-3 and calpain activity, the phosphorylation levels of PKC and eIF2α and Grp78 protein expression, and the decrease in procaspase-12 expression induced by cantharidin. Importantly, cantharidin significantly decreased the tumor volume (a dramatic 71% reduction after 21 days of treatment) in nude mice xenografted with T24 cells. Taken together, these results indicate cantharidin induced human bladder cancer cell apoptosis through a calcium/PKC-regulated ER stress pathway. These findings suggest that cantharidin may be a novel and potential anticancer agent targeting on bladder cancer cells.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Kou-Tong Huang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Hui Lu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Kai-Min Fang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University and Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yi-Chang Su
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Wei C, Lin M, Jinjun B, Su F, Dan C, Yan C, Jie Y, Jin Z, Zi-Chun H, Wu Y. Involvement of general control nonderepressible kinase 2 in cancer cell apoptosis by posttranslational mechanisms. Mol Biol Cell 2015; 26:1044-57. [PMID: 25589675 PMCID: PMC4357505 DOI: 10.1091/mbc.e14-10-1438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GCN2 exerts its proapoptotic function in cancer cell death by posttranslational mechanisms. Modulation of GCN2 expression can be used for molecular targeted cancer therapy and drug development. Na+,K+-ATPase ligands are the first identified small-molecule drugs that can trigger cancer cell death by modulating GCN2 signaling. General control nonderepressible kinase 2 (GCN2) is a promising target for cancer therapy. However, the role of GCN2 in cancer cell survival or death is elusive; further, small molecules targeting GCN2 signaling are not available. By using a GCN2 level-based drug screening assay, we found that GCN2 protein level critically determined the sensitivity of the cancer cells toward Na+,K+-ATPase ligand–induced apoptosis both in vitro and in vivo, and this effect was largely dependent on C/EBP homologous protein (CHOP) induction. Further analysis revealed that GCN2 is a short-lived protein. In A549 lung carcinoma cells, cellular β-arrestin1/2 associated with GCN2 and maintained the GCN2 protein level at a low level by recruiting the E3 ligase NEDD4L and facilitating consequent proteasomal degradation. However, Na+,K+-ATPase ligand treatment triggered the phosphorylation of GCN2 at threonine 899, which increased the GCN2 protein level by disrupting the formation of GCN2–β-arrestin–NEDD4L ternary complex. The enhanced GCN2 level, in turn, aggravated Na+,K+-ATPase ligand–induced cancer cell apoptosis. Our findings reveal that GCN2 can exert its proapoptotic function in cancer cell death by posttranslational mechanisms. Moreover, Na+,K+-ATPase ligands emerge as the first identified small-molecule drugs that can trigger cancer cell death by modulating GCN2 signaling.
Collapse
Affiliation(s)
- Chen Wei
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China State Key Lab of Natural Medicines, China Pharmaceutical University, Nanjing 210017, China
| | - Ma Lin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Bian Jinjun
- Department of Anaesthesiology and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai 200433, China
| | - Feng Su
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Cao Dan
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chen Yan
- Department of Chinese Medicine, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Yang Jie
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Zhang Jin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hua Zi-Chun
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China State Key Lab of Natural Medicines, China Pharmaceutical University, Nanjing 210017, China
| | - Yin Wu
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China State Key Lab of Natural Medicines, China Pharmaceutical University, Nanjing 210017, China
| |
Collapse
|