1
|
Kaur C, Sahu SK, Bansal K, DeLiberto LK, Zhang J, Tewari D, Bishayee A. Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. Antioxid Redox Signal 2024; 41:342-395. [PMID: 38299535 DOI: 10.1089/ars.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Keshav Bansal
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Ali MA, Khan N, Ali A, Akram H, Zafar N, Imran K, Khan T, Khan K, Armaghan M, Palma‐Morales M, Rodríguez‐Pérez C, Caunii A, Butnariu M, Habtemariam S, Sharifi‐Rad J. Oridonin from Rabdosia rubescens: An emerging potential in cancer therapy - A comprehensive review. Food Sci Nutr 2024; 12:3046-3067. [PMID: 38726411 PMCID: PMC11077219 DOI: 10.1002/fsn3.3986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer incidences are rising each year. In 2020, approximately 20 million new cancer cases and 10 million cancer-related deaths were recorded. The World Health Organization (WHO) predicts that by 2024 the incidence of cancer will increase to 30.2 million individuals annually. Considering the invasive characteristics of its diagnostic procedures and therapeutic methods side effects, scientists are searching for different solutions, including using plant-derived bioactive compounds, that could reduce the probability of cancer occurrence and make its treatment more comfortable. In this regard, oridonin (ORI), an ent-kaurane diterpenoid, naturally found in the leaves of Rabdosia rubescens species, has been found to have antitumor, antiangiogenesis, antiasthmatic, antiinflammatory, and apoptosis induction properties. Extensive research has been performed on ORI to find various mechanisms involved in its anticancer activities. This review article provides an overview of ORI's effectiveness on murine and human cancer populations from 1976 to 2022 and provides insight into the future application of ORI in different cancer therapies.
Collapse
Affiliation(s)
| | - Noohela Khan
- Department of Nutrition SciencesRashid Latif Medical CollegeLahorePakistan
| | - Ahmad Ali
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Hira Akram
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Noushaba Zafar
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Kinza Imran
- Department of Food Science and Human NutritionUVASLahorePakistan
| | - Tooba Khan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | | | - Muhammad Armaghan
- Department of Healthcare Biotechnology, Atta‐ur‐Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
| | - Marta Palma‐Morales
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
| | - Celia Rodríguez‐Pérez
- Departamento de Nutrición y Bromatología, Facultad de FarmaciaUniversidad de GranadaGranadaSpain
- Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’Universidad de GranadaGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Angela Caunii
- “Victor Babes” University of Medicine and PharmacyTimisoaraRomania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from TimisoaraTimisoaraRomania
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | | |
Collapse
|
3
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
4
|
Wen D, Yang YS, Gao DZ, Wang Z, Jiang QW, Zhao XF. Oridonin Enhances the Anti-Metastasis Effect of Oxaliplatinliplatin on Colorectal Cancer Liver Metastasis. Bull Exp Biol Med 2021; 172:26-32. [PMID: 34792718 DOI: 10.1007/s10517-021-05324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/26/2022]
Abstract
The anti-metastasis effect of oridonin in combination with oxaliplatin on colorectal cancer liver metastasis was studied using a BALB/c nude mouse model. The liver condition, bloody ascites, cholestasis, and liver metastasis scores in the three groups receiving oxaliplatin combined with oridonin were significantly milder than in the control group and importantly the anti-migratory effect of oxaliplatin combined with oridonin was obviously the strongest (p<0.05). Oridonin possessed no hepatotoxicity; instead, it effectively alleviated liver injury caused by oxaliplatin. Oridonin alone or in combination with oxaliplatin significantly decreased serum levels of α-fetoprotein and carcinoembryonic antigen. Therefore, oridonin combined with oxaliplatin displays great potential to markedly increase the anti-metastasis effect of oxaliplatin in the treatment of liver metastases of colorectal cancer.
Collapse
Affiliation(s)
- D Wen
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Y S Yang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - D Z Gao
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Z Wang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Q W Jiang
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - X F Zhao
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China.
| |
Collapse
|
5
|
Xu L, Zhu L, Zheng K, Liu J, Tian P, Hu D, Wang Q, Zuo Q, Ouyang X, Dai Y, Fu Y, Dai X, Huang F, Cheng J. The design and synthesis of redox-responsive oridonin polymeric prodrug micelle formulation for effective gastric cancer therapy. J Mater Chem B 2021; 9:3068-3078. [PMID: 33885668 DOI: 10.1039/d1tb00127b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced gastric cancer (GC) is a significant threat to human health. Oridonin (ORI), isolated from the Chinese herb Rabdosia rubescens, has demonstrated great potential in GC therapy. However, the application of ORI in the clinic was greatly hindered by its poor solubility, low bioavailability, and rapid plasma clearance. Herein, a simple and novel redox-sensitive ORI polymeric prodrug formulation was synthesized by covalently attaching ORI to poly(ethylene glycol)-block-poly(l-lysine) via a disulfide linker, which can self-assemble into micelles (P-ss-ORI) in aqueous solutions and produce low critical micelle concentrations (about 10 mg L-1), characterized by small size (about 80 nm), negative surface charge (about -12 mV), and high drug loading efficiency (18.7%). The in vitro drug release study showed that P-ss-ORI can rapidly and completely release ORI in a glutathione (GSH)-rich environment and under low pH conditions. Moreover, in vitro and in vivo investigations confirmed that P-ss-ORI could remarkably extend the blood circulation time of ORI, enrich in tumor tissue, be effectively endocytosed by GC cancer cells, and quickly and completely release the drug under high intracellular GSH concentrations and low pH conditions, all these characteristics ultimately inhibit the growth of GC. This redox and pH dual-responsive P-ss-ORI formulation provides a useful strategy for GC treatment.
Collapse
Affiliation(s)
- Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu X, Xu J, Zhou J, Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis 2020; 8:448-462. [PMID: 34179309 PMCID: PMC8209342 DOI: 10.1016/j.gendis.2020.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the diseases with high morbidity and mortality on a global scale. Chemotherapy remains the primary treatment option for most cancer patients, including patients with progressive, metastatic, and recurrent diseases. To date, hundreds of chemotherapy drugs are used to treat various cancers, however, the anti-cancer efficacy and outcomes are largely hampered by chemotherapy-associated toxicity and acquired therapeutic resistance. The natural product (NP) oridonin has been extensively studied for its anti-cancer efficacy. More recently, oridonin has been shown to overcome drug resistance through multiple mechanisms, with yet-to-be-defined bona fide targets. Hundreds of oridonin derivative analogs (oridonalogs) have been synthesized and screened for improved potency, bioavailability, and other drug properties. Particularly, many of these oridonalogs have been tested against oridonin for tumor growth inhibition, potential for overcoming therapeutic resistance, and immunity modulation. This concise review seeks to summarize the advances in this field in light of identifying clinical-trial level drug candidates with the promise for treating progressive cancers and reversing chemoresistance.
Collapse
Affiliation(s)
- Xi Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jimin Xu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
- Corresponding author. Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Basic Science Building, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Qiang Shen
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Corresponding author. Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
8
|
Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 2019; 569:118595. [DOI: 10.1016/j.ijpharm.2019.118595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
|
9
|
Wang SQ, Hou HL, Bie LY, Nie CY, Wang LN, Gao S, Hu TT, Chen XB. Mechanistic studies of the apoptosis induced by the macrocyclic natural product tetrandrine in MGC 803 cells. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Wang SQ, Zhou KR, Shi XL, Lv HF, Bie LY, Zhao WJ, Chen XB. Steroidal dimer by001 inhibits proliferation and migration of esophageal cancer cells via multiple mechanisms. Cancer Chemother Pharmacol 2018; 83:179-189. [PMID: 30406839 DOI: 10.1007/s00280-018-3715-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/25/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate the potential inhibitory effects of structurally novel steroidal dimer by001 in esophageal cancer in vitro. METHODS The cytotoxicity of by001 on esophageal, gastric, neuroblastoma and prostate cancer cells was examined MTT assay and colony formation assay. By001 induced apoptosis and production of intracellular reactive oxygen species on esophageal cancer cells Ec109, TE-1 and human normal gastric epithelial cells GES-1 was detected by flow cytometry. The effect of by001 on mitochondrial membrane potential was detected by fluorescence microscope through JC-1 staining. The level of intracellular reactive oxygen species was measured by fluorescence microscope and flow cytometry via DCFH-DA staining. The effect of by001 on members of Bcl-2 family, Fas, LC3, PARP and caspases was determined by Western blot. The effect of by001 on migration was measured by transwell assay. RESULTS By001 effectively inhibited proliferation of esophageal, gastric, neuroblastoma and prostate cancer cells in a time- and concentration-dependent manner in vitro. By001 reduced the number and the size of colonies at low micromolar concentrations, elevated cellular ROS levels and caused mitochondrial dysfunction in esophageal cancer cells. Molecular mechanistic studies showed that by001 triggered apoptosis through regulating members of Bcl-2 family and Fas. CONCLUSIONS These findings suggested that by001 may inhibited proliferation of esophageal cancer cells through mitochondria and death receptor-mediated apoptotic pathways, autophagy induction, as well as suppressed migration of esophageal cancer cells.
Collapse
Affiliation(s)
- Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, China
| | - Kai-Rui Zhou
- School of Pharmaceutical Sciences and Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Li Shi
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266033, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, China
| | - Liang-Yu Bie
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, China
| | - Wei-Jie Zhao
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No. 127, Dongming Road, Zhengzhou, 450008, China.
| |
Collapse
|