1
|
Santos LGAA, Musther H, Bala N, Deferm N, Patel G, Brouwers J, Turner DB. Gastrointestinal Bile Salt Concentrations in Healthy Adults Under Fasted and Fed Conditions: A Systematic Review and Meta-Analysis for Mechanistic Physiologically-Based Pharmacokinetic (PBPK) Modelling. AAPS J 2025; 27:31. [PMID: 39843813 DOI: 10.1208/s12248-025-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption. The aims of this meta-analysis were to collate all appropriate data on intestinal bile salt concentrations in healthy adults across all GIT segments in fasted and fed states for the purpose of PBPK modelling. Terms relating to bile composition were searched in PubMed and Google Scholar from inception to May 2024. Selected studies included aspirated intestinal fluid collected via gastric tubes or colonoscopy. Results showed high variability across studies and a time-dependency for the fed state. Data were rich for the duodenum, which showed a two-fold increase for the fed state versus the fasted state within multiple studies. Peaks and troughs in bile salt concentrations along the GIT were observed for both fasted and fed states, likely due to segmental water absorption differences. The highest between subject variability was observed for the duodenum in the fasted and fed state and the fed proximal jejunum, distal ileum, and colon. The findings from this meta-analysis can be used for the purpose of PBPK modelling to capture segmental drug solubilisation and absorption in fasted and fed states. However, data are lacking under different fed conditions, especially following low-fat meals, so the impact of different fat content associated with different meals on bile salt concentrations cannot be discerned.
Collapse
Affiliation(s)
| | - Helen Musther
- Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Neeru Bala
- Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Neel Deferm
- Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Gaurangkumar Patel
- Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | | | - David B Turner
- Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
2
|
Bennett-Lenane H, Jørgensen JR, Koehl NJ, Henze LJ, O'Shea JP, Müllertz A, Griffin BT. Exploring porcine gastric and intestinal fluids using microscopic and solubility estimates: Impact of placebo self-emulsifying drug delivery system administration to inform bio-predictive in vitro tools. Eur J Pharm Sci 2021; 161:105778. [PMID: 33647402 DOI: 10.1016/j.ejps.2021.105778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/09/2023]
Abstract
Validation and characterisation of in vitro and pre-clinical animal models to support bio-enabling formulation development is of paramount importance. In this work, post-mortem gastric and small intestinal fluids were collected in the fasted, fed state and at five sample-points post administration of a placebo Self-Emulsifying Drug Delivery System (SEDDS) in the fasted state to pigs. Cryo-TEM and Negative Stain-TEM were used for ultrastructure characterisation. Ex vivo solubility of fenofibrate was determined in the fasted-state, fed-state and post-SEDDS administration. Highest observed ex vivo drug solubility in intestinal fluids after SEDDS administration was used for optimising the biorelevant in vitro conditions to determine maximum solubility. Under microscopic evaluation, fasted, fed and SEDDS fluids resulted in different colloidal structures. Drug solubility appeared highest 1 hour post SEDDS administration, corresponding with presence of SEDDS lipid droplets. A 1:200 dispersion of SEDDS in biorelevant media matched the highest observed ex vivo solubility upon SEDDS administration. Overall, impacts of this study include increasing evidence for the pig preclinical model to mimic drug solubility in humans, observations that SEDDS administration may poorly mimic colloidal structures observed under fed state, while microscopic and solubility porcine assessments provided a framework for increasingly bio-predictive in vitro tools.
Collapse
Affiliation(s)
| | - Jacob R Jørgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Laura J Henze
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
3
|
Klitgaard M, Müllertz A, Berthelsen R. Estimating the Oral Absorption from Self-Nanoemulsifying Drug Delivery Systems Using an In Vitro Lipolysis-Permeation Method. Pharmaceutics 2021; 13:pharmaceutics13040489. [PMID: 33918449 PMCID: PMC8065752 DOI: 10.3390/pharmaceutics13040489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to design an in vitro lipolysis-permeation method to estimate drug absorption following the oral administration of self-nanoemulsifying drug delivery systems (SNEDDSs). The method was evaluated by testing five oral formulations containing cinnarizine (four SNEDDSs and one aqueous suspension) from a previously published pharmacokinetic study in rats. In that study, the pharmacokinetic profiles of the five formulations did not correlate with the drug solubilization profiles obtained during in vitro intestinal lipolysis. Using the designed lipolysis-permeation method, in vitro lipolysis of the five formulations was followed by in vitro drug permeation in Franz diffusion cells equipped with PermeaPad® barriers. A linear in vivo–in vitro correlation was obtained when comparing the area under the in vitro drug permeation–time curve (AUC0–3h), to the AUC0–3h of the plasma concentration–time profile obtained from the in vivo study. Based on these results, the evaluated lipolysis-permeation method was found to be a promising tool for estimating the in vivo performance of SNEDDSs, but more studies are needed to evaluate the method further.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: ; Tel.: +45-35-33-65-13
| |
Collapse
|
4
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
5
|
Lv X, Zhang S, Ma H, Dong P, Ma X, Xu M, Tian Y, Tang Z, Peng J, Chen H, Zhang J. In situ monitoring of the structural change of microemulsions in simulated gastrointestinal conditions by SAXS and FRET. Acta Pharm Sin B 2018; 8:655-665. [PMID: 30109189 PMCID: PMC6089861 DOI: 10.1016/j.apsb.2018.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microemulsions are promising drug delivery systems for the oral administration of poorly water-soluble drugs. However, the evolution of microemulsions in the gastrointestinal tract is still poorly characterized, especially the structural change of microemulsions under the effect of lipase and mucus. To better understand the fate of microemulsions in the gastrointestinal tract, we applied small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) to monitor the structural change of microemulsions under the effect of lipolysis and mucus. First, the effect of lipolysis on microemulsions was studied by SAXS, which found the generation of liquid crystalline phases. Meanwhile, FRET spectra indicated micelles with smaller particle sizes were generated during lipolysis, which could be affected by CaCl2, bile salts and lecithin. Then, the effect of mucus on the structural change of lipolysed microemulsions was studied. The results of SAXS and FRET indicated that the liquid crystalline phases disappeared, and more micelles were generated. In summary, we studied the structural change of microemulsions in simulated gastrointestinal conditions by SAXS and FRET, and successfully monitored the appearance and disappearance of the liquid crystalline phases and micelles.
Collapse
Affiliation(s)
- Xia Lv
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Shuguang Zhang
- Xinglin College, Liaoning University of Traditional Chinese Medicine, Shenyang 110167, China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Peipei Dong
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ming Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Tian
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Haibo Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jianbin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| |
Collapse
|