1
|
Li Z, Huang K, Cao J, Guo M, Dong H, Ye W, Zeng S, Wei J, Xi Q. Silencing Hmox1 Attenuates Cerebral Ischemia/reperfusion Injury and Inhibits Inflammation and Ferroptosis Via the PPAR-γ/FABP4 Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04899-1. [PMID: 40261607 DOI: 10.1007/s12035-025-04899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
Cerebral ischemia/reperfusion (I/R) may aggravate tissue injury by promoting oxidative stress, inflammation and cell death after ischemic injury. This study aimed to identify cerebral I/R-associated hub genes and to reveal the underlying mechanism on ischemic I/R. Differential expressed genes (DEGs) were identified from the Gene Expression Omnibus (GEO) database, and hub genes were screened from a protein-protein interaction (PPI) network. The I/R rat model was constructed using the middle cerebral artery occlusion and reperfusion (MCAO/R), and Hmox1 was silenced to investigate its effects on I/R injury, inflammation, oxidative stress and ferroptosis. The effects of silencing Hmox1 were also evaluated in OGD/R-treated HT22 cells. The inhibitor of peroxisome proliferator-activated receptor (PPAR)-γ pathway, T0070907, was used to determine the regulation of Hmox1 on the PPAR-γ/fatty acid binding protein 4 (FABP4) pathway. Heme oxygenase 1 (Hmox1), matrix metalloproteinase-13 (Mmp13), CD44 molecule (Cd44), C-C motif chemokine ligand 3 (Ccl3) and serpin family B member 5 (Serpinb5) were selected as hub genes with higher expression in MCAO/R rats. Silencing Hmox1 inhibited cell apoptosis, decreased tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), IL-6, Fe2+, malondialdehyde (MDA) and reactive oxygen species (ROS), but increased glutathione (GSH). Silencing Hmox1 suppressed the expression of cyclooxygenase 2 (COX2) and acyl-CoA synthetase long-chain family member 4 (ACSL4) but promoted glutathione peroxidase 4 (GPX4) expression, with the upregulation of PPAR-γ and FABP4. Application of T0070907 reversed the effects of silencing Hmox1. Silencing Hmox1 ameliorated cerebral injury, inflammation and ferroptosis via the PPAR-γ/FABP4 pathway, offering theoretical basis for cerebral I/R management.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Kai Huang
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Jie Cao
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Mingwei Guo
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Haifa Dong
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Weisheng Ye
- Department of Neurology, Longnan Hospital, the First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Songbing Zeng
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Jianing Wei
- School of the Frist Clinical Medicine, Gannan Medical University, Ganzhou City, China
| | - Qiujiang Xi
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, China.
| |
Collapse
|
2
|
Chen H, Xu P, Mao L, Wang Y, Feng Z, Wang Z, Shen C, Xu Y. CCL3 correlates with ferroptosis in intervertebral disc degeneration and its prognostic significance. Sci Rep 2025; 15:12146. [PMID: 40204911 PMCID: PMC11982295 DOI: 10.1038/s41598-025-94989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent and debilitating condition associated with low back pain (LBP). Despite its significant impact, effective diagnostic markers for early-stage IVDD remain elusive. Recent research has implicated ferroptosis, a newly recognized form of programmed cell death, in the pathogenesis of IVDD, particularly involving disturbances in iron homeostasis. Additionally, the CC Chemokine Ligand 3 (CCL3) has been linked to macrophage migration and the progression of IVDD, yet its precise diagnostic and prognostic utility remains uncertain. This study aims to elucidate the underlying mechanisms of ferroptosis and the involvement of CCL3 in IVDD, with the objective of establishing their diagnostic and prognostic significance. By uncovering these mechanisms, novel biomarkers and therapeutic targets for the diagnosis and prognosis of IVDD may be identified. Single-cell sequencing data were acquired from the TCGA database, and a range of bioinformatics methods were employed for comprehensive analysis. Furthermore, validation experiments were conducted using in vitro techniques, including the analysis of human tissue samples, co-culture assays with neutralizing antibodies, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. Our findings suggest that CCL3 holds promise as a diagnostic and may was prognostic biomarker for IVDD. Validation experiments demonstrated that CCL3 functions via the pAMPK/AMPK pathway, thereby modulating apoptosis and impacting the progression of IVDD. Our study underscores the diagnostic and prognostic potential of CCL3 in patients with IVDD. Further investigations are warranted to explore therapeutic strategies targeting CCL3, ultimately enhancing the management of IVDD.
Collapse
Affiliation(s)
- He Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui Province, China
| | - Peng Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Leijing Mao
- Department of Expanded Program on Immunization, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province, China
| | - Yicong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zian Feng
- Department of Cardiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Zhongxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Cailiang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Man S, Liu W, Bi J, Bai J, Wu Q, Hu B, Hu J, Ma L. Smart Mesoporous Silica Nanoparticles Loading Curcumin Inhibit Liver Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25743-25754. [PMID: 39506560 DOI: 10.1021/acs.jafc.4c08202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Curcumin (CUR) as one of the natural edible pigments is approved by the World Health Organization due to its nontoxic and anticancer effect. However, the utility of CUR is restricted due to its low oral bioavailability. Nanoparticle drug delivery systems like mesoporous silica nanoparticles (MSNs) have been extensively used due to their high specific surface area, high loading rate, and ease of modification. This study developed lactobionic acid (LA)-modified carboxymethyl chitosan (CMCS)-coated MSNs to deliver CUR specifically targeting hepatocellular carcinoma. Among these nanoparticles, LA targets liver cancer cells. CMCS utilizes pH-responsive release of CUR. The LA-CMCS-MSN@CUR (MSN@CUR) were evaluated using several methods, including Fourier transform infrared spectroscopy, transmission electron microscopy, and zeta potential measurements. Liver cellular uptake of MSN@CUR depends on a specific LA receptor-mediated endocytosis mechanism. Additionally, MSN@CUR performed with a better antitumor effect than Cur in H22 orthotopic transplantation of liver cancer and H22 solid tumor mouse models. Treatment with MSN@CUR significantly reduced the protein of VEGF, p-PI3K, and AKT, increased the protein of caspases 3 and 8, ultimately inhibited tumor migration, and promoted apoptosis. This study provides a new path for delivery of natural active ingredients with excellent bioavailability in the antitumor field.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingxian Bi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingjing Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiong Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Hu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Shamsnia HS, Roustaei M, Ahmadvand D, Butler AE, Amirlou D, Soltani S, Momtaz S, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Impact of curcumin on p38 MAPK: therapeutic implications. Inflammopharmacology 2023; 31:2201-2212. [PMID: 37498375 DOI: 10.1007/s10787-023-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/28/2023]
Abstract
Curcumin (diferuloylmethane) is a herbal remedy which possesses numerous biological attributes including anti-inflammatory, anti-oxidant and anti-cancer properties. Curcumin has been shown to impact a number of signaling pathways including nuclear factor kappa B (NF-KB), reactive oxygen species (ROS), Wingless/Integrated (Wnt), Janus kinase-signal transducer and activator of mitogen-activated protein kinase (MAPK) and transcription (JAK/STAT). P38 belongs to the MAPKs, is known as a stress-activated MAPK and is involved in diverse biological responses. P38 is activated in various signaling cascades. P38 plays a role in inflammation, cell differentiation, proliferation, motility and survival. This cascade can serve as a therapeutic target in many disorders. Extensive evidence confirms that curcumin impacts the P38 MAPK signaling pathway, through which it exerts anti-inflammatory, neuroprotective, and apoptotic effects. Hence, curcumin can positively affect inflammatory disorders and cancers, as well as to increase glucose uptake in cells. This review discusses the pharmacological and therapeutic effects of curcumin as effected through p38 MAPK.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Ahmadvand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Dorsa Amirlou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sanam Soltani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Zhao N, Gao Y, Jia H, Jiang X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia-reperfusion injury. Apoptosis 2023; 28:702-729. [PMID: 36892639 DOI: 10.1007/s10495-023-01824-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cerebral ischemia, one of the leading causes of neurological dysfunction of brain cells, muscle dysfunction, and death, brings great harm and challenges to individual health, families, and society. Blood flow disruption causes decreased glucose and oxygen, insufficient to maintain normal brain tissue metabolism, resulting in intracellular calcium overload, oxidative stress, neurotoxicity of excitatory amino acids, and inflammation, ultimately leading to neuronal cell necrosis, apoptosis, or neurological abnormalities. This paper summarizes the specific mechanism of cell injury that apoptosis triggered by reperfusion after cerebral ischemia, the related proteins involved in apoptosis, and the experimental progress of herbal medicine treatment through searching, analyzing, and summarizing the PubMed and Web Of Science databases, which includes active ingredients of herbal medicine, prescriptions, Chinese patent medicines, and herbal extracts, providing a new target or new strategy for drug treatment, and providing a reference for future experimental directions and using them to develop suitable small molecule drugs for clinical application. With the research of anti-apoptosis as the core, it is important to find highly effective, low toxicity, safe and cheap compounds from natural plants and animals with abundant resources to prevent and treat Cerebral ischemia/reperfusion (I/R) injury (CIR) and solve human suffering. In addition, understanding and summarizing the apoptotic mechanism of cerebral ischemia-reperfusion injury, the microscopic mechanism of CIR treatment, and the cellular pathways involved will help to develop new drugs.
Collapse
Affiliation(s)
- Nan Zhao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuhe Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongtao Jia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xicheng Jiang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
6
|
Shen XL, Guo YN, Lu MH, Ding KN, Liang SS, Mou RW, Yuan S, He YM, Tang LP. Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114590. [PMID: 36738614 DOI: 10.1016/j.ecoenv.2023.114590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1β, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1β and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
7
|
Emran TB, Islam F, Nath N, Sutradhar H, Das R, Mitra S, Alshahrani MM, Alhasaniah AH, Sharma R. Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint. Life (Basel) 2022; 13:99. [PMID: 36676048 PMCID: PMC9867091 DOI: 10.3390/life13010099] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Zheng N, Zhou M, He Y, Xu H, Chen X, Duan Z, Yang L, Zeng R, Liu Y, Li M. Low curcumin concentrations combined with blue light inhibits cutibacterium acnes biofilm-induced inflammatory response through suppressing MAPK and NF-κB in keratinocytes. Photodiagnosis Photodyn Ther 2022; 40:103204. [PMID: 36403927 DOI: 10.1016/j.pdpdt.2022.103204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Curcumin has been employed as a photosensitizer agent during photodynamic therapy (PDT). Cutibacterium acnes (C. acnes) can cause an inflammatory response in human keratinocytes; however, no research has been conducted to determine whether curcumin and its photodynamic properties can prevent this inflammatory reaction. OBJECTIVE We hypothesized that curcumin may control the C. acnes biofilm-induced inflammatory response in keratinocytes, either alone or in combination with blue light photodynamic therapy. METHODS Following C. acnes biofilm stimulation, human primary keratinocytes were treated with 20 μM curcumin solution alone or 5 μM curcumin with combined blue light irradiation. The amount of secreted protein was measured using an ELISA kit. The expression levels of Toll-like receptor 2 (TLR2) and its downstream proteins were determined using western blot. RESULTS Treatment with 20 μM curcumin, but not 5 μM curcumin, reduced the inflammatory response to C. acnes biofilms in keratinocytes by blocking the TLR2/MAPK/NF-κB pathway. Interestingly, 5 μM curcumin combined with blue light also reduced the C. acnes biofilm-induced inflammation indicated above by blocking the TLR2/MAPK/NF-κB pathway. CONCLUSION Curcumin alone, in sufficient concentrations, or low-concentration curcumin with blue light had anti-inflammatory activity on keratinocytes stimulated by C. acnes biofilms through inhibition of MAPK and NF-κB signaling pathways by downregulating TLR2 expression.
Collapse
Affiliation(s)
- Nana Zheng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Meng Zhou
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Lu Yang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Graduate School of Peking Union Medical College, China
| | - Rong Zeng
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital with Nanjing Medical University, 169 Hushan Street, Nanjing, Jiangsu 210042, China.
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 12 Jiang Wang Miao Street, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
9
|
Mesenchymal Stem Cell Exosomal miR-146a Mediates the Regulation of the TLR4/MyD88/NF- κB Signaling Pathway in Inflammation due to Diabetic Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3864863. [PMID: 35761836 PMCID: PMC9233583 DOI: 10.1155/2022/3864863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is the main cause of vision loss in diabetic patients, which cannot be completely resolved by typical blood sugar control. Inflammation influences the development of DR, so reducing the inflammatory response in DR patients is crucial to the prevention of DR. Therefore, we explored the regulatory effect of bone marrow mesenchymal stem cell (BMSC) exosomes on inflammation in DR mice. In order to analyze the mechanism of action, we used BMSC exosomal miR-146a to treat microglias in DR mice to observe cellular changes and expression of inflammatory factors. It was found that BMSC exosomal miR-146a reduced the levels of proliferating cell antigen and B-cell lymphoma-2 in microglias of DR mice and increased Bcl-2-related X with cysteine aspartic protease-3. By analyzing the expression of inflammatory factors, we found that BMSC exosomal miR-146a reduced the levels of TNF-α, IL-1β, and IL-6, which suggested that miR-146a can alleviate inflammation in DR mice. Further exploration found that miR-146a reduced the activity of TLR4 and increased the activity of MyD88 and NF-κB. Furthermore, the overexpression of TLR4 reversed the effects of miR-146a on the proliferation, apoptosis, and inflammation of microglias. Our study demonstrated that BMSC exosomal miR-146a can regulate the inflammatory response of DR by mediating the TLR4/MyD88/NF-κB pathway, providing an experimental basis for the prevention and treatment of DR.
Collapse
|
10
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
11
|
Hu W, Qiang T, Chai L, Liang T, Ren L, Cheng F, Li C, James TD. Simultaneous tracking of autophagy and oxidative stress during stroke with an ICT-TBET integrated ratiometric two-photon platform. Chem Sci 2022; 13:5363-5373. [PMID: 35655567 PMCID: PMC9093177 DOI: 10.1039/d1sc06805a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Over recent years, fluorescent probes exhibiting simultaneous responses to multiple targets have been developed for in situ, real-time monitoring of cellular metabolism using two photon fluorescence sensing techniques due to numerous advantages including ease of operation, rapid reporting, high resolution, long visualization time and being non-invasive. However, due to interference from different fluorescence channels during simultaneous monitoring of multiple targets and the lack of ratiometric capability amongst the available probes, the accuracy in tracing metabolic processes has been restricted. With this research, using a through-bond energy transfer (TBET) mechanism, we designed a viscosity and peroxynitrite (ONOO-) mitochondria-targeting two-photon ratiometric fluorescent probe Mito-ONOO. Our results indicated that with decreasing levels of mitochondrial viscosity and increasing levels of ONOO-, the maximum of the emission wavelength of the probe shifted from 621 nm to 495 nm under 810 nm two-photon excitation. The baselines for the two emission peaks were significantly separated (Δλ = 126 nm), improving the resolution and reliability of bioimaging. Moreover, by ratiometric analysis during oxygen-glucose deprivation/reoxygenation (OGD/R, commonly used to simulate cell ischemia/reperfusion injury), the real-time visualization of the metabolic processes of autophagy and oxidative stress was possible. Our research indicated that during cellular oxygen-glucose deprivation/reoxygenation, cells produce ONOO-, causing cellular oxidative stress and cellular autophagy after 15 min, as such Mito-ONOO exhibits the potential for the monitoring and diagnosis of stroke, as well as providing insight into potential treatments, and drug design.
Collapse
Affiliation(s)
- Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Li Chai
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-Central University for Nationalities Wuhan 430074 China
| | - Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology Xi'an 710021 China
| | - Chunya Li
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Material Science, South-Central University for Nationalities Wuhan 430074 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA27AY UK .,School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| |
Collapse
|
12
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Front Pharmacol 2022; 13:893118. [PMID: 35559238 PMCID: PMC9090137 DOI: 10.3389/fphar.2022.893118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is the leading cause of death and disability worldwide, and restoring the blood flow to ischemic brain tissues is currently the main therapeutic strategy. However, reperfusion after brain ischemia leads to excessive reactive oxygen species production, inflammatory cell recruitment, the release of inflammatory mediators, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, and blood-brain barrier damage; these pathological mechanisms will further aggravate brain tissue injury, ultimately affecting the recovery of neurological functions. It has attracted the attention of researchers to develop drugs with multitarget intervention effects for individuals with cerebral ischemia. A large number of studies have established that curcumin plays a significant neuroprotective role in cerebral ischemia via various mechanisms, including antioxidation, anti-inflammation, anti-apoptosis, protection of the blood-brain barrier, and restoration of mitochondrial function and structure, restoring cerebral circulation, reducing infarct volume, improving brain edema, promoting blood-brain barrier repair, and improving the neurological functions. Therefore, summarizing the results from the latest literature and identifying the potential mechanisms of action of curcumin in cerebral ischemia will serve as a basis and guidance for the clinical applications of curcumin in the future.
Collapse
Affiliation(s)
- Feng Fan
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Lei
- Department of Neurology, The Third People’s Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
14
|
Lei Z, Luan F, Zhang X, Peng L, Li B, Peng X, Liu Y, Liu R, Zeng N. Piperazine ferulate protects against cardiac ischemia/reperfusion injury in rat via the suppression of NLRP3 inflammasome activation and pyroptosis. Eur J Pharmacol 2022; 920:174856. [DOI: 10.1016/j.ejphar.2022.174856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
|
15
|
Liu W, Shao C, Zang C, Sun J, Xu M, Wang Y. Protective effects of dexmedetomidine on cerebral ischemia/reperfusion injury via the microRNA-214/ROCK1/NF-κB axis. BMC Anesthesiol 2021; 21:203. [PMID: 34399695 PMCID: PMC8365892 DOI: 10.1186/s12871-021-01423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/27/2021] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is a complication of surgical procedure associated with high mortality. The protective effect of dexmedetomidine (DEX) on CIRI has been explored in previous works, yet the underlying molecular mechanism remains unclear. Our study explored the protective effect of DEX and its regulatory mechanism on CIRI. METHODS A CIRI rat model was established using middle cerebral artery occlusion (MCAO). Neurological deficit scores for rats received MCAO modeling or DEX treatment were measured. Cerebral infarction area of rats was detected by TTC staining, while damage of neurons in hippocampal regions of rats was determined by hematoxylin-eosin (HE) staining. Apoptosis rate of neurons in hippocampal regions was examined by TUNEL staining. The dual-luciferase assay was performed to detect the binding of microRNA-214 (miR-214) to Rho-associated kinase 1 (ROCK1). RESULTS DEX treatment significantly reduced infarction area of MCAO rats and elevated miR-214 expression. Injection of miR-214 inhibitor attenuated the effect of DEX in MCAO rats by increasing the area of cerebral infarction in rats and apoptosis rate of hippocampal neurons. ROCK1 was targeted and negatively regulated by miR-214. The overexpression of ROCK1 led to activation of NF-κB to aggravate CIRI. CONCLUSION Therapeutic effects of DEX on CIRI was elicited by overexpressing miR-214 and impairing ROCK1 expression and NF-κB activation. Our finding might provide novel insights into the molecular mechanism of DEX in rats with CIRI.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China
| | - Cuihua Shao
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Chuanshan Zang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Jian Sun
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China
| | - Min Xu
- Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, PR China
| | - Yuna Wang
- Department of Anesthesiology|, The Affiliated Hospital of Qingdao University, No. 59, Haier Road, Laoshan District, Qingdao, 266003, Shandong, PR China.
| |
Collapse
|
16
|
Lin Z, Liu H, Yang C, Zheng H, Zhang Y, Su W, Shang J. Curcumin mediates autophagy and apoptosis in granulosa cells: a study of integrated network pharmacology and molecular docking to elucidate toxicological mechanisms. Drug Chem Toxicol 2021; 45:2411-2423. [PMID: 34315305 DOI: 10.1080/01480545.2021.1956941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin (Cur) is a flavonoid derived from Curcuma longa L. that has been shown to have a variety of biological activities, but some previous studies have described its non-negligible negative effects on female reproduction and embryo development. To further explore the toxic stress effect, this study investigated apoptosis and autophagy of healthy buffalo (Bubalus bubalis) derived granulosa cells (GCs) exposed to Cur and/or autophagy inhibitors. Results showed that Cur declined viability of GCs in a concentration-dependent manner. Apoptosis was observed in Cur-treated GCs from 3 h. Meanwhile, under Cur stress, autophagosomes accumulated in cells, and the expression levels of autophagy key proteins LC3 and Beclin 1 were up-regulated, suggesting that Cur could induce autophagy in GCs. Early autophagy inhibitor 3-methyladenine (3-MA) increased the apoptosis rate of Cur exposed GCs, but the autophagosome degradation inhibitor chloroquine (CQ) had no effect on the apoptosis rate. The network pharmacological and molecular docking analysis indicated that the perturbation of IKK/NF-κB might be the cause of Cur toxicity toward GCs. This study unveiled another side of Cur pharmacological effects that programmed cell death can be induced by Cur in GCs, suggesting that it should be prudent to use Cur as a clinical drug for its side effects on the female reproductive system.
Collapse
Affiliation(s)
- Zhen Lin
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Chunyan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Haiying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yu Zhang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jianghua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
17
|
Wu S, Guo T, Qi W, Li Y, Gu J, Liu C, Sha Y, Yang B, Hu S, Zong X. Curcumin ameliorates ischemic stroke injury in rats by protecting the integrity of the blood-brain barrier. Exp Ther Med 2021; 22:783. [PMID: 34055082 PMCID: PMC8145684 DOI: 10.3892/etm.2021.10215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) is critical for proper cerebral homeostasis and its dysfunction during ischemic stroke can result in significant neurological injury. The major goal of the present study was to identify whether curcumin pretreatment possessed protective effects on BBB integrity during the 24 h of acute ischemic brain injury. To investigate the protective effects of curcumin, male Sprague-Dawley rats were divided into multiple groups, including sham, middle cerebral artery occlusion/reperfusion (MCAO/R) vehicle and curcumin pretreated MCAO/R groups. The effects of curcumin were measured by analyzing neurological deficits, infarct size, BBB permeability and expression levels of permeability-related proteins in the brain. It was found that curcumin pretreatment significantly improved neurological scores, decreased infarct size, and protected synaptic remodeling of hippocampal neurons and upregulated the protein expression level of tight junction proteins, ZO-1, occludin and claudin-5 in ischemic rat brains. Furthermore, curcumin pretreatment before stroke was shown to downregulate the phosphorylation of NF-κB and MMP-9, which are central mediators of inflammation. The results from the present study indicated that curcumin pretreatment ameliorated ischemic stroke injury by protecting BBB integrity and synaptic remodeling, as well as inhibiting inflammatory responses.
Collapse
Affiliation(s)
- Shuguang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 313000, P.R. China
| | - Ting Guo
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wenxuan Qi
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Gu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Cui Liu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuehong Sha
- Department of Emergency, First People's Hospital, Pizhou, Jiangsu 221300, P.R. China
| | - Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Emergency Center of The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Emergency Center of The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Emergency Center of The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
18
|
Cheng F, Qiang T, Ren L, Liang T, Gao X, Wang B, Hu W. Observation of inflammation-induced mitophagy during stroke by a mitochondria-targeting two-photon ratiometric probe. Analyst 2021; 146:2632-2637. [PMID: 33660731 DOI: 10.1039/d1an00208b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study reports the development of a new, pH-sensitive, mitochondria-targeting two-photon ratiometric probe (Mito-BNO) for real-time tracking of mitophagy, a process that can be accelerated in brain tissue during stroke. Mito-BNO shows excellent capability for mitochondrial localisation (Pearson's correlation coefficient, r = 0.91), and can also effectively distinguish mitochondria from other subcellular organelles such as lysosomes and the endoplasmic reticulum (r = 0.40 and r = 0.33, respectively). Meanwhile, a rewarding pKa value (5.23 ± 0.03) and the pH reversibility suggest that Mito-BNO can track mitophagy in real time via confocal imaging. Most importantly, the relationship between mitophagy and neuroinflammation during stroke has been successfully demonstrated by evaluating the fluorescence of PC12 cells stained with Mito-BNO during an oxygen-glucose deprivation/reperfusion (OGD/R) process with and without anti-inflammatory treatment. The results indicate that the occurrence of mitophagy during stroke is caused by oxidative stress induced by neuroinflammation. This study will help further understanding stroke pathogenesis, can provide potential new targets for early diagnosis and treatment, and can also help to develop therapeutic drugs for stroke.
Collapse
Affiliation(s)
- Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Tianyu Liang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Xiaoyang Gao
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Baoshuai Wang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China. and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
19
|
Gao X, Yi X, Liu Z, Dong X, Xia G, Zhang X, Shen X. Comparative Study on Curcumin Loaded in Golden Pompano ( Trachinotus blochii) Head Phospholipid and Soybean Lecithin Liposomes: Preparation, Characteristics and Anti-Inflammatory Properties. Molecules 2021; 26:2328. [PMID: 33923773 PMCID: PMC8073247 DOI: 10.3390/molecules26082328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we compared the characteristics and in vitro anti-inflammatory effects of two curcumin liposomes, prepared with golden pompano head phospholipids (GPL) and soybean lecithin (SPC). GPL liposomes (GPL-lipo) and SPC liposomes (SPC-lipo) loaded with curcumin (CUR) were prepared by thin film extrusion, and the differences in particle size, ζ-potential, morphology, and storage stability were investigated. The results show that GPL-lipo and SPC-lipo were monolayer liposomes with a relatively small particle size and excellent encapsulation rates. However, GPL-lipo displayed a larger negative ζ-potential and better storage stability compared to SPC-lipo. Subsequently, the effects of phospholipids in regulating the inflammatory response of macrophages were evaluated in vitro, based on the synergistic effect with CUR. The results showed that both GPL and SPC exerted excellent synergistic effect with CUR in inhibiting the lipopolysaccharide (LPS)-induced secretion of nitric oxide (NO), reactive oxygen species (ROS), and pro-inflammatory genes (tumor necrosis factor (TNF)-α, interleukin 1β (IL-β), and interleukin 6 (IL-6)) in RAW264.7 cells. Interestingly, GPL-lipo displayed superior inhibitory effects, compared to SPC-lipo. The findings provide a new innovative bioactive carrier for development of stable CUR liposomes with good functional properties.
Collapse
Affiliation(s)
- Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xiuping Dong
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China; (X.G.); (X.Y.); (Z.L.); (G.X.)
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of seafood Deep Processing, Dalian Polytechnic University, Dalian 116000, China;
- Key Laboratory of Seafood Processing of Haikou, Hainan 570228, China
| |
Collapse
|
20
|
Dipeptidyl-peptidase 3 protects oxygen-glucose deprivation/reoxygenation-injured hippocampal neurons by suppressing apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. Int Immunopharmacol 2021; 96:107595. [PMID: 33812256 DOI: 10.1016/j.intimp.2021.107595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Dipeptidyl-peptidase 3 (DPP3) plays a key role in regulating apoptosis, oxidative stress and inflammation under various pathological conditions, however, whether DPP3 regulates apoptosis and oxidative stress in neurons undergoing cerebral ischemia/reperfusion injury has not yet been well studied. The goals of this work were to evaluate the role of DPP3 in the regulation of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced apoptosis, oxidative stress and inflammation in HT22 hippocampal neurons. Here, we showed that DPP3 expression was elevated in response to OGD/R in neurons. Knockdown of DPP3 exacerbated OGD/R-induced apoptosis, oxidative stress and inflammation, whilst up-regulation of DPP3 alleviated OGD/R-induced apoptosis, oxidative stress and inflammation in HT22 neurons. Further results revealed that DPP3 enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and promoted transcriptional activity of the anti-oxidant response element (ARE). Additionally, DPP3 was shown to regulate Nrf2/ARE activation in a kelch-like ECH-associated protein 1 (Keap1)-dependent manner. Notably, inhibition of Nrf2 markedly reversed the DPP3-mediated neuroprotective effects against OGD/R injury. Taken together, these findings demonstrate that DPP3 exerts a neuroprotective role in OGD/R-injured neurons by suppressing neuronal apoptosis, oxidative stress and inflammation via modulation of Keap1/Nrf2 signaling. This work suggests DPP3 as a potential target for providing neuroprotective effects during cerebral ischemia/reperfusion injury.
Collapse
|
21
|
Dong X, Wang L, Song G, Cai X, Wang W, Chen J, Wang G. Physcion Protects Rats Against Cerebral Ischemia-Reperfusion Injury via Inhibition of TLR4/NF-kB Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:277-287. [PMID: 33536742 PMCID: PMC7847770 DOI: 10.2147/dddt.s267856] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022]
Abstract
Background Ischemic stroke (IS) is characterized by the rapid loss of brain function due to ischemia. Physcion has been found to have a neuroprotective effect against cerebral ischemia-reperfusion (I/R) injury. However, the mechanism by which physcion regulates cerebral I/R injury remains largely unknown. Methods An oxygen-glucose deprivation/reperfusion (OGD/R) model in SH-SY5Y cells and a rat cerebral ischemia-reperfusion (I/R) model were established, respectively. CCK-8 and flow cytometry assays were used to detect the viability and apoptosis of SH-SY5Y cells. Moreover, enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of SOD, MDA, GSH-Px, TNF-α, IL-1β, IL-6 and IL-10 in the supernatant of SH-SY5Y cells. Meanwhile, Western blot assay was used to detect the expressions of TLR4, p-p65 and p-IκB in SH-SY5Y cells and I/R rats. Results In this study, physcion treatment significantly rescued OGD/R-induced neuronal injury. In addition, physcion decreased inflammatory response in SH-SY5Y cells after OGD/R insult, as shown by the decreased levels of the pro-inflammatory factors TNF-α, IL-1β, IL-6 and IL-10. Moreover, physcion attenuated the oxidative stress in OGD/R-treated SY-SY5Y cells, as evidenced by the increased SOD and GSH levels and the decreased ROS and MDA levels. Meanwhile, physcion significantly reduced cerebral infarction, attenuated neuronal injury and apoptosis in I/R rats. Furthermore, physcion markedly decreased the expressions of TLR4, p-NF-κB p65 and p-IκB in the brain tissues of rats subjected to I/R and in SH-SY5Y cells exposed to OGD/R. Conclusion In conclusion, our study indicated that physcion protected neuron cells against I/R injury in vitro and in vivo by inhibition of the TLR4/NF-kB pathway; thus, physcion might serve as a promising therapeutic candidate for IS.
Collapse
Affiliation(s)
- Xiaobo Dong
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Lei Wang
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Guangrong Song
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Xu Cai
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Wenxin Wang
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Jiaqi Chen
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| | - Gesheng Wang
- The Third Department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| |
Collapse
|