1
|
Laurindo LF, Simili OAG, Araújo AC, Guiguer EL, Direito R, Valenti VE, de Oliveira V, de Oliveira JS, Yanaguizawa Junior JL, Dias JA, Maria DA, Rici REG, Bueno MDS, Sloan KP, Sloan LA, Barbalho SM. Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting-A Comprehensive Review of Its Unusual Health Benefits. BIOLOGY 2025; 14:143. [PMID: 40001911 PMCID: PMC11851571 DOI: 10.3390/biology14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Melatonin is indispensable for the homeostasis of plants and animals. In humans, it can help prevent or be an adjuvant treatment for several diseases mainly related to the immune system, inflammation, and oxidative stress. Moreover, a melatonin-rich diet is linked to several health benefits, such as regulation of circadian rhythm, regulation of the immunological system, epilepsy control, delaying the aging process, and diminishing hormones related to cancer. This review aimed to show the effects of melatonin in diseases beyond its traditional use. The results showed it can present scavenging of free radicals, reducing inflammatory cytokines, and modulating the immune system. Moreover, it can improve insulin resistance, blood pressure, LDL-c, adipose tissue mass, adhesion molecules, endothelial impairment, and plaque formation. These effects result in neuro- and cardioprotection, improvement of liver diseases, rheumatoid arthritis, dermatitis, COVID-19, polycystic ovaries, and sepsis. We conclude that plant melatonin can benefit patients with many diseases besides sleep problems and neurodegeneration. Plant melatonin may be more cost-effective and present fewer adverse events than synthetic. However, more clinical trials should be performed to show adequate doses, formulation, and treatment time.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Otávio Augusto Garcia Simili
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vitor Engrácia Valenti
- Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, SP, Brazil
| | - Vitor de Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, New York Medical College, New York, NY 10595, USA
| | - Juliana Santos de Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, University of Miami, Coral Gables, FL 33146, USA
| | - José Luiz Yanaguizawa Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Durvanei Augusto Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05585-000, SP, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Manuela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Clinical Department, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
2
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Onyeakazi UM, Columb MO, Rosalind A, Kanakarajan S, Galley HF. Melatonin treatment has consistent but transient beneficial effects on sleep measures and pain in patients with severe chronic pain: the DREAM-CP randomised controlled trial. Br J Anaesth 2024; 132:725-734. [PMID: 38355388 PMCID: PMC10925889 DOI: 10.1016/j.bja.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Sleep disturbance is a major issue for patients with chronic pain. Melatonin has been shown to improve symptoms of fibromyalgia, but its efficacy in other chronic non-malignant pain conditions is not fully known. Hence, we determined the effect of melatonin in patients with severe noncancer chronic pain. METHODS This was a randomised double-blinded crossover trial of modified-release melatonin as Circadin™ compared with placebo. Sixty male and female subjects with chronic severe pain were randomised to receive either 2 mg of Circadin™ or placebo before sleep for 6 weeks, followed by a >4 week washout, then crossing over to the other treatment. Sleep disturbance, quality, and latency were measured using three different validated sleep assessment tools. The primary outcome measure was self-reported sleep disturbance after 6 weeks of treatment. Adverse events were also recorded. RESULTS Sleep disturbance after 6 weeks was not significantly altered by melatonin treatment, but differences between melatonin and placebo treatment periods after 3 weeks were seen: sleep disturbance (P=0.014), latency (P=0.04), overall sleep quality (P=0.004), and effect of pain on sleep (P=0.032). Pain intensity scores improved during both treatment periods (both P<0.001). There were no differences in adverse events between treatment periods. CONCLUSIONS Circadin™ treatment did not improve sleep disturbance in patients with severe chronic pain compared with placebo at 6 weeks, but there were consistent improvements in aspects of sleep in the shorter term. Given its favourable safety profile, it could be beneficial for some patients with chronic pain. CLINICAL TRIAL REGISTRATION ISRCTN12861060.
Collapse
Affiliation(s)
- Uzunma M Onyeakazi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Malachy O Columb
- Manchester University Hospitals NHS Foundation Trust, Wythenshawe, UK
| | - Adam Rosalind
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Helen F Galley
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
4
|
Sieminski M, Szaruta-Raflesz K, Szypenbejl J, Krzyzaniak K. Potential Neuroprotective Role of Melatonin in Sepsis-Associated Encephalopathy Due to Its Scavenging and Anti-Oxidative Properties. Antioxidants (Basel) 2023; 12:1786. [PMID: 37760089 PMCID: PMC10525116 DOI: 10.3390/antiox12091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The brain is one of the organs involved in sepsis, and sepsis-induced brain injury manifests as sepsis-associated encephalopathy (SAE). SAE may be present in up to 70% of septic patients. SAE has a very wide spectrum of clinical symptoms, ranging from mild behavioral changes through cognitive disorders to disorders of consciousness and coma. The presence of SAE increases mortality in the population of septic patients and may lead to chronic cognitive dysfunction in sepsis survivors. Therefore, therapeutic interventions with neuroprotective effects in sepsis are needed. Melatonin, a neurohormone responsible for the control of circadian rhythms, exerts many beneficial physiological effects. Its anti-inflammatory and antioxidant properties are well described. It is considered a potential therapeutic factor in sepsis, with positive results from studies on animal models and with encouraging results from the first human clinical trials. With its antioxidant and anti-inflammatory potential, it may also exert a neuroprotective effect in sepsis-associated encephalopathy. The review presents data on melatonin as a potential drug in SAE in the wider context of the pathophysiology of SAE and the specific actions of the pineal neurohormone.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | | - Jacek Szypenbejl
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (K.S.-R.); (K.K.)
| | | |
Collapse
|
5
|
She H, Tan L, Yang R, Zheng J, Wang Y, Du Y, Peng X, Li Q, Lu H, Xiang X, Hu Y, Liu L, Li T. Identification of featured necroptosis-related genes and imbalanced immune infiltration in sepsis via machine learning. Front Genet 2023; 14:1158029. [PMID: 37091800 PMCID: PMC10117955 DOI: 10.3389/fgene.2023.1158029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background: The precise diagnostic and prognostic biological markers were needed in immunotherapy for sepsis. Considering the role of necroptosis and immune cell infiltration in sepsis, differentially expressed necroptosis-related genes (DE-NRGs) were identified, and the relationship between DE-NRGs and the immune microenvironment in sepsis was analyzed.Methods: Machine learning algorithms were applied for screening hub genes related to necroptosis in the training cohort. CIBERSORT algorithms were employed for immune infiltration landscape analysis. Then, the diagnostic value of these hub genes was verified by the receiver operating characteristic (ROC) curve and nomogram. In addition, consensus clustering was applied to divide the septic patients into different subgroups, and quantitative real-time PCR was used to detect the mRNA levels of the hub genes between septic patients (SP) (n = 30) and healthy controls (HC) (n = 15). Finally, a multivariate prediction model based on heart rate, temperature, white blood count and 4 hub genes was established.Results: A total of 47 DE-NRGs were identified between SP and HC and 4 hub genes (BACH2, GATA3, LEF1, and BCL2) relevant to necroptosis were screened out via multiple machine learning algorithms. The high diagnostic value of these hub genes was validated by the ROC curve and Nomogram model. Besides, the immune scores, correlation analysis and immune cell infiltrations suggested an immunosuppressive microenvironment in sepsis. Septic patients were divided into 2 clusters based on the expressions of hub genes using consensus clustering, and the immune microenvironment landscapes and immune function between the 2 clusters were significantly different. The mRNA levels of the 4 hub genes significantly decreased in SP as compared with HC. The area under the curve (AUC) was better in the multivariate prediction model than in other indicators.Conclusion: This study indicated that these necroptosis hub genes might have great potential in prognosis prediction and personalized immunotherapy for sepsis.
Collapse
Affiliation(s)
- Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruibo Yang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zheng
- School of Medicine, Chongqing University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Haibin Lu
- Department of Intensive Care Unit, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yi Hu, ; Liangming Liu, ; Tao Li,
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yi Hu, ; Liangming Liu, ; Tao Li,
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yi Hu, ; Liangming Liu, ; Tao Li,
| |
Collapse
|
6
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|