1
|
Cui J, Ge Y, Guo M, Zhang L, Zhang S, Zhao L, Shi Y, Baqar M, Yao Y, Zhu H, Wang L, Cheng Z, Sun H. Occupational exposure to traditional and emerging organophosphate esters: A comparison of levels across different sources and blood distribution. ENVIRONMENT INTERNATIONAL 2024; 194:109165. [PMID: 39637534 DOI: 10.1016/j.envint.2024.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Currently, there is limited knowledge regarding occupational exposure of traditional and emerging organophosphate esters (OPEs) from e-waste and automobile dismantling activities, and their distribution within the human blood. In the present study, we collected dust and urine samples from e-waste (ED) (n = 91 and 130, respectively) and automobile dismantling (AD) plants (n = 93 and 94, respectively), as well as serum-plasma-whole blood samples (sets from 128 participants) within ED areas for analyzing traditional and emerging organophosphate tri-esters (tri-OPEs) and organophosphate di-esters (di-OPEs). Median concentration of ∑tri-OPEs and ∑di-OPEs in dust (37,400 and 9,000 ng/g in ED, and 27,000 and 14,700 ng/g in AD areas, respectively) and urine samples (11.8 and 21.9 ng/mL in ED areas, and 17.2 and 15.0 ng/mL in AD areas, respectively) indicated that both e-waste and automobile dismantling activities served as important pollution source for OPEs. Dust ingestion has been evidenced to be the main exposure pathway compared to dermal absorption and inhalation. The median concentration (ng/mL) of OPEs in blood matrices descended order as follow: whole blood (13.1) > serum (11.6) > plasma (10.4) for ∑tri-OPEs, and plasma (3.51) > serum (0.36) > whole blood (0.23) for ∑di-OPEs. Concentration ratios of OPEs varied across blood matrices, depending on the compounds, suggesting that the essentiality of appropriate biomonitoring matrix for conducting comprehensive exposure assessments.
Collapse
Affiliation(s)
- Jingren Cui
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Meiqi Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yumeng Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Guevara RD, Pastor JJ, López-Vergé S, Manteca X, Tedo G, Llonch P. Physiology, gene expression, and behavior as potential indicators of oxidative stress in piglets. BMC Vet Res 2024; 20:471. [PMID: 39415196 PMCID: PMC11481391 DOI: 10.1186/s12917-024-04320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
The goal of the current study was to develop a pig model to investigate oxidative stress with a low negative impact on piglet welfare. Four independent trials (A, B, C, and D) were performed using a single intraperitoneal shot of lipopolysaccharide (LPS) as an immune challenge, aiming to assess the minimal LPS dose for piglets of different age to trigger a measurable acute oxidative stress response in healthy animals. In trial A, piglets received an LPS dose of 25 µg/KgBW at 41 days post-weaning (p.w.). In trial B, piglets received 25 µg/KgBW of LPS at 28 days p.w., in trials C And D, piglets were injected with 50 µg/KgBW of LPS at 21 days p.w., respectively. Piglets were randomly allocated either to the T1) Control group with saline solution (Ctrl), or T2) LPS challenge (LPS). The oxidative stress response was measured through the enzymatic activity of glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT), in both plasma and intestinal tissues. Intestinal gene expression of oxidative stress and inflammatory markers was assessed. Discomfort behaviors (panting, prostration, trembling, and vomits) were also recorded. Plasmatic and intestinal oxidative stress response was inconsistent across the four trials even when the dose and pig age were similar, possibly due to individual variability. Relative gene expression differences of anti-inflammatory cytokines (IL10), oxidation precursor (iNOS), and antioxidant markers (GPx4, MnSOD, and CAT) were detected between Ctrl and LPS treatment (P < 0.05) when assessed. Behavioral observations were sensitive to the LPS dose relative to Ctrl (P < 0.05) in all four trials. These results suggest that behavioral observations can be used as a non-invasive methodology to detect the presence of oxidative stress in pigs in challenging conditions. Behavioral observations were more sensitive than other indicators (i.e., biomarkers and gene expression) in the current study. However, a sensitivity scale system needs to be developed to qualify and rank the impact of oxidative stress in pigs.
Collapse
Affiliation(s)
- Raúl David Guevara
- Animal Welfare Education Centre (AWEC) Advisors S.L., , Research Park UAB, Campus UAB, Cerdanyola del Valles, 08193, Spain.
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Edifici V, Travessera dels Turons, Cerdanyola del Valles, 08193, Spain.
| | - Jose J Pastor
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Sergi López-Vergé
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Xavier Manteca
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Edifici V, Travessera dels Turons, Cerdanyola del Valles, 08193, Spain
| | - Gemma Tedo
- Animal Science Innovation Division, Lucta, Cerdanyola del Vallès, Spain
| | - Pol Llonch
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, Edifici V, Travessera dels Turons, Cerdanyola del Valles, 08193, Spain
| |
Collapse
|
3
|
Edmunds CE, Welch CB, Lourenco JM, Callaway TR, Pringle TD, Dove CR. The Effects of Dietary Manganese and Selenium on Growth and the Fecal Microbiota of Nursery Piglets. Vet Sci 2023; 10:650. [PMID: 37999473 PMCID: PMC10675067 DOI: 10.3390/vetsci10110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The objective of this study was to determine the impact of varying dietary manganese and selenium concentrations, antioxidant cofactors, on the growth performance and fecal microbial populations of nursery pigs. The piglets (N = 120) were blocked by weight (5.22 ± 0.7 kg) and sex. The pens (n = 5/treatment) within a block were randomly assigned to diets in a 2 × 3 factorial design to examine the effects of Se (0.1 and 0.3 mg/kg added Se) and Mn (0, 12, and 24 mg/kg added Mn) and were fed in three phases (P1 = d 1-7, P2 = d 8-21, P3 = d 22-35). The pigs and orts were weighed weekly. Fecal samples were collected d 0 and 35 for 16S rRNA bacterial gene sequencing and VFA analysis. The data were analyzed as factorial via GLM in SAS. There was a linear response (p < 0.05) in overall ADG across dietary Mn. Supplementing 24 mg/kg Mn tended to decrease (p < 0.10) the relative abundance of many bacteria possessing pathogenic traits relative to Mn controls. Meanwhile, increasing Mn concentration tended to foster the growth of bacteria correlated with gut health and improved growth (p < 0.10). The data from this study provide preliminary evidence on the positive effects of manganese on growth and gut health of nursery pigs.
Collapse
Affiliation(s)
- Clint E. Edmunds
- School of Sciences, Clayton State University, Morrow, GA 30260, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Christina B. Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| | - T. Dean Pringle
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA;
| | - C. Robert Dove
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (C.B.W.); (J.M.L.); (T.R.C.); (C.R.D.)
| |
Collapse
|
4
|
Ye XQ, Zhu YR, Yang YY, Qiu SJ, Liu WC. Biogenic Selenium Nanoparticles Synthesized with Alginate Oligosaccharides Alleviate Heat Stress-Induced Oxidative Damage to Organs in Broilers through Activating Nrf2-Mediated Anti-Oxidation and Anti-Ferroptosis Pathways. Antioxidants (Basel) 2023; 12:1973. [PMID: 38001826 PMCID: PMC10669636 DOI: 10.3390/antiox12111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Selenium (Se) is an essential trace element for maintaining health due to its ideal antioxidant properties. We previously prepared a new type of biogenic selenium nanoparticles based on alginate oligosaccharides (SeNPs-AOS), and this study aimed to investigate the protective effects of SeNPs-AOS (Se particle size = 80 nm, Se content = 8%) on organ health in broilers challenged with HS. A total of 192 21-day-old Arbor Acres broilers were randomly divided into four groups according to a 2 × 2 experimental design, including a thermoneutral zone group (TN, raised under 23 ± 1.5 °C); TN + SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (HS, raised under 33 ± 2 °C for 10 h/day); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). There were six replicates in each group (eight broilers per replicate). The results showed that SeNPs-AOS improved the splenic histomorphology, enhanced the activity of catalase (CAT) and glutathione peroxidase (GSH-Px) of the spleen, as well as upregulating the splenic mRNA expression of antioxidant-related genes in broilers under HS. In addition, SeNPs-AOS reversed the pathological changes in bursa caused by HS increased the activity of GST, GSH-Px, and CAT and upregulated the mRNA expression of Nrf2 and antioxidant-related genes in the bursa of heat-stressed broilers. In addition, dietary SeNPs-AOS improved the hepatic damage, increased the activity of GSH-Px in the liver, and upregulated the mRNA expression of antioxidant-related genes while downregulating the Keap1 gene expression of the liver in broilers during HS. Moreover, dietary SeNPs-AOS upregulated the anti-ferroptosis-related genes expression of liver in broilers under HS. In conclusion, dietary SeNPs-AOS could relieve HS-induced oxidative damage to the spleen, bursa of Fabricius and liver in broilers by upregulating the Nrf2-mediated antioxidant gene expression and SeNPs-AOS could also upregulate the expression of hepatic Nrf2-related anti-ferroptosis genes in heat-stressed broilers. These findings are beneficial for the development of new nano-antioxidants in broilers.
Collapse
Affiliation(s)
- Xue-Qing Ye
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.-Q.Y.); (Y.-Y.Y.); (S.-J.Q.)
| | - Yan-Ru Zhu
- Department of Animal Nutrition and Environmental Health, College of Animal Science and Technology, Northwest A&F University, Xi’an 712100, China;
| | - Yu-Ying Yang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.-Q.Y.); (Y.-Y.Y.); (S.-J.Q.)
| | - Sheng-Jian Qiu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.-Q.Y.); (Y.-Y.Y.); (S.-J.Q.)
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (X.-Q.Y.); (Y.-Y.Y.); (S.-J.Q.)
| |
Collapse
|
5
|
Zhang L, Liu S, Piao X. Dietary 25-hydroxycholecalciferol supplementation improves performance, immunity, antioxidant status, intestinal morphology, and bone quality in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2592-2600. [PMID: 33063320 DOI: 10.1002/jsfa.10889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 25-Hydroxycholecalciferol (25OHD3 ) is a new feed additive, which is a potential alternative to vitamin D3 in swine nutrition. The objective of this study was to determine the effects of different doses of 25OHD3 supplementation on performance, immunity, antioxidant capacity, intestinal morphology and bone quality in piglets. RESULTS As dietary 25OHD3 supplementation increased, the average daily gain (ADG) improved (P < 0.05) quadratically during days 1-14, and tended to increase (P = 0.06) quadratically during the overall period of the experiment. Increasing 25OHD3 supplementation increased (linear effect, P < 0.05) the serum 25OHD3 level and serum glutathione peroxidase (GSH-Px) activity. On day 14, serum immunoglobulin A (IgA) was increased (linear and quadratic effects, P < 0.05) as dietary 25OHD3 supplementation increased. On day 28, serum IgA level was higher (P < 0.05) linearly and the complement 3 (C3) level was reduced (P < 0.05) linearly as dietary supplementation of 25OHD3 increased. The mucosal GSH-Px activity of the small intestine was higher (quadratic effect, P < 0.05) with increasing 25OHD3 supplementation. Jejunal villus height (P = 0.06) and villus height to crypt depth ratio (P = 0.07) tended to increase quadratically, and the villus height to crypt-depth ratio of the ileum increased (P < 0.05) linearly and quadratically with increasing 25OHD3 supplementation. Dietary supplementation with an increasing level of 25OHD3 increased breaking strength of tibias and femurs (quadratic effect, P < 0.05). CONCLUSION Increasing dietary 25OHD3 supplementation partly improved performance, immunity, antioxidant status, intestinal morphology, and bone properties of weaned piglets. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Effect of Maternal Dietary Redox Levels on Antioxidative Status and Immunity of the Suckling Off-Spring. Antioxidants (Basel) 2021; 10:antiox10030478. [PMID: 33803000 PMCID: PMC8002634 DOI: 10.3390/antiox10030478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
This study investigates two levels of dietary selenium (Se) and vitamin E in combination on their status in sows and their progeny, and influence on antioxidant status and immunological responses of the piglets at weaning. Female pigs (n = 6) were provided LOW or HIGH antioxidant nutrition (Se and vitamin E) from mating until weaning of their off-spring. The HIGH treatment elevated the concentration of Se (p = 0.015) and α-tocopherol (p = 0.023) in plasma of piglets compared with piglets of the LOW treatment. Treatments also affected the concentrations of milk and sow plasma immunoglobulins. Piglets from sows on the HIGH treatment had increased (p < 0.001) activity of glutathione peroxidase, lower serum levels of C-reactive protein (p = 0.005), haptoglobin (p = 0.05) and albumin (p = 0.05), and the number of white blood cells (p = 0.023) and the ratio of NEU to LYM was lower (p = 0.025) than in piglets from sows on the LOW group. Furthermore, the dietary antioxidant level influenced responses of cytokines (interleukine (IL) 6 (p = 0.007), 12 (p = 0.01) and 18 (p = 0.01)) in piglets’ plasma. In conclusion, improved antioxidant status via dietary maternal provision improves the robustness of the offspring via immunomodulatory mechanisms.
Collapse
|
7
|
Supplemental hot melt extruded nano-selenium increases expression profiles of antioxidant enzymes in the livers and spleens of weanling pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Zheng Y, Dai W, Hu X, Hong Z. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J. Fibromyalgia and nutrition: Therapeutic possibilities? Biomed Pharmacother 2018; 103:531-538. [DOI: 10.1016/j.biopha.2018.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
|
10
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|