1
|
Deng X, Li H, Wu A, He J, Mao X, Dai Z, Tian G, Cai J, Tang J, Luo Y. Composition, Influencing Factors, and Effects on Host Nutrient Metabolism of Fungi in Gastrointestinal Tract of Monogastric Animals. Animals (Basel) 2025; 15:710. [PMID: 40075993 PMCID: PMC11898470 DOI: 10.3390/ani15050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Intestinal fungi, collectively referred to as mycobiota, constitute a small (0.01-2%) but crucial component of the overall intestinal microbiota. While fungi are far less abundant than bacteria in the gut, the volume of an average fungal cell is roughly 100-fold greater than that of an average bacterial cell. They play a vital role in nutrient metabolism and maintaining intestinal health. The composition and spatial organization of mycobiota vary across different animal species and are influenced by a multitude of factors, including age, diet, and the host's physiological state. At present, quantitative research on the composition of mycobiota in monogastric animals remains scarce, and investigations into the mechanisms underlying their metabolic functions are also relatively restricted. This review delves into the distribution characteristics of mycobiota, including Candida albicans, Saccharomyces cerevisiae, Kazachstania slooffiae, in monogastric animals, the factors influencing their composition, and the consequent impacts on host metabolism and health. The objective is to offer insights for a deeper understanding of the nutritional significance of intestinal fungi in monogastric animals and to explore the mechanisms by which they affect host health in relation to inflammatory bowel disease (IBD), diarrhea, and obesity. Through a systematic evaluation of their functional contributions, this review shifts our perception of intestinal fungi from overlooked commensals to key components in gut ecosystem dynamics, emphasizing their potential in personalized metabolic control regulation and the enhancement of disease prevention and treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (H.L.); (A.W.); (J.H.); (X.M.); (Z.D.); (G.T.); (J.C.); (J.T.)
| |
Collapse
|
2
|
Wei G. Insights into gut fungi in pigs: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:96-112. [PMID: 39154229 DOI: 10.1111/jpn.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Fungi in the gut microbiota of mammals play a crucial role in host physiological regulation, including intestinal homeostasis and host immune regulation. However, our understanding of gut fungi in mammals remains limited, especially in economically valuable animals, such as pigs. Therefore, this review first describes the classification and characterisation of fungi, provides insights into the methods used to study gut fungi, and summarises the recent progress on pig gut fungi. Additionally, it discusses the challenges in the study of pig gut fungi and highlights potential perspectives. The aim of this review is to serve as a valuable reference for advancing our knowledge of gut fungi in animals.
Collapse
Affiliation(s)
- Guanyue Wei
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Harlow K, Summers KL, Oliver WT, Wells JE, Crouse M, Neville BW, Rempel LA, Rivera I, Ramsay TG, Davies CP. Weaning transition, but not the administration of probiotic candidate Kazachstania slooffiae, shaped the gastrointestinal bacterial and fungal communities in nursery piglets. Front Vet Sci 2024; 10:1303984. [PMID: 38274656 PMCID: PMC10808496 DOI: 10.3389/fvets.2023.1303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.
Collapse
Affiliation(s)
- KaLynn Harlow
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - William T. Oliver
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - James E. Wells
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Matthew Crouse
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Bryan W. Neville
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Lea A. Rempel
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Timothy G. Ramsay
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
4
|
Wang T, Jia Z, An C, Ren P, Yang Y, Wang W, Su L. The Protective Effect of Auricularia cornea var. Li. Polysaccharide on Alcoholic Liver Disease and Its Effect on Intestinal Microbiota. Molecules 2023; 28:8003. [PMID: 38138493 PMCID: PMC10745760 DOI: 10.3390/molecules28248003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
This study's objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.
Collapse
Affiliation(s)
- Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Zikun Jia
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Canghai An
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Ping Ren
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiting Yang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wanting Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
5
|
Prisnee TL, Rahman R, Fouhse JM, Van Kessel AG, Brook RK, Willing BP. Tracking the fecal mycobiome through the lifespan of production pigs and a comparison to the feral pig. Appl Environ Microbiol 2023; 89:e0097723. [PMID: 37902410 PMCID: PMC10686082 DOI: 10.1128/aem.00977-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE This work provides evidence that early-life fungal community composition, or host genetics, influences long-term mycobiome composition. In addition, this work provides the first comparison of the feral pig mycobiome to the mycobiome of intensively raised pigs.
Collapse
Affiliation(s)
- Tausha L. Prisnee
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Rajibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle M. Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan K. Brook
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Hu J, Chen J, Hou Q, Xu X, Ren J, Ma L, Yan X. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs. MICROBIOME 2023; 11:31. [PMID: 36814349 PMCID: PMC9948344 DOI: 10.1186/s40168-023-01468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gut fungi are increasingly recognized as important contributors to host physiology, although most studies have focused on gut bacteria. Post-translational modifications (PTMs) of proteins play vital roles in cell metabolism. However, the contribution of gut fungi to host protein PTMs remains unclear. Mining gut fungi that mediate host protein PTMs and dissecting their mechanism are urgently needed. RESULTS We studied the gut fungal communities of 56 weaned piglets and 56 finishing pigs from seven pig breeds using internal transcribed spacer (ITS) gene amplicon sequencing and metagenomics. The results showed that Kazachstania slooffiae was the most abundant gut fungal species in the seven breeds of weaned piglets. K. slooffiae decreased intestinal epithelial lysine succinylation levels, and these proteins were especially enriched in the glycolysis pathway. We demonstrated that K. slooffiae promoted intestinal epithelial glycolysis by decreasing lysine succinylation by activating sirtuin 5 (SIRT5). Furthermore, K. slooffiae-derived 5'-methylthioadenosine metabolite promoted the SIRT5 activity. CONCLUSIONS These findings provide a landscape of gut fungal communities of pigs and suggest that K. slooffiae plays a crucial role in intestinal glycolysis metabolism through lysine desuccinylation. Our data also suggest a potential protective strategy for pigs with an insufficient intestinal energy supply. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xiaojian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jing Ren
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Arfken AM, Frey JF, Carrillo NI, Dike NI, Onyeachonamm O, Rivera DN, Davies CP, Summers KL. Porcine fungal mock community analyses: Implications for mycobiome investigations. Front Cell Infect Microbiol 2023; 13:928353. [PMID: 36844394 PMCID: PMC9945231 DOI: 10.3389/fcimb.2023.928353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The gut microbiome is an integral partner in host health and plays a role in immune development, altered nutrition, and pathogen prevention. The mycobiome (fungal microbiome) is considered part of the rare biosphere but is still a critical component in health. Next generation sequencing has improved our understanding of fungi in the gut, but methodological challenges remain. Biases are introduced during DNA isolation, primer design and choice, polymerase selection, sequencing platform selection, and data analyses, as fungal reference databases are often incomplete or contain erroneous sequences. Methods Here, we compared the accuracy of taxonomic identifications and abundances from mycobiome analyses which vary among three commonly selected target gene regions (18S, ITS1, or ITS2) and the reference database (UNITE - ITS1, ITS2 and SILVA - 18S). We analyze multiple communities including individual fungal isolates, a mixed mock community created from five common fungal isolates found in weanling piglet feces, a purchased commercial fungal mock community, and piglet fecal samples. In addition, we calculated gene copy numbers for the 18S, ITS1, and ITS2 regions of each of the five isolates from the piglet fecal mock community to determine whether copy number affects abundance estimates. Finally, we determined the abundance of taxa from several iterations of our in-house fecal community to assess the effects of community composition on taxon abundance. Results Overall, no marker-database combination consistently outperformed the others. Internal transcribed space markers were slightly superior to 18S in the identification of species in tested communities, but Lichtheimia corymbifera, a common member of piglet gut communities, was not amplified by ITS1 and ITS2 primers. Thus, ITS based abundance estimates of taxa in piglet mock communities were skewed while 18S marker profiles were more accurate. Kazachstania slooffiae displayed the most stable copy numbers (83-85) while L. corymbifera displayed significant variability (90-144) across gene regions. Discussion This study underscores the importance of preliminary studies to assess primer combinations and database choice for the mycobiome sample of interest and raises questions regarding the validity of fungal abundance estimates.
Collapse
Affiliation(s)
- Ann M. Arfken
- Oak Ridge Institute for Science and Education, Center for Disease Control, Atlanta, GA, United States
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Nora Isabel Carrillo
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Nneka Ijeoma Dike
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ogechukwu Onyeachonamm
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Daniela Nieves Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
8
|
Maternal Mycobiome, but Not Antibiotics, Alters Fungal Community Structure in Neonatal Piglets. Appl Environ Microbiol 2022; 88:e0159322. [PMID: 36448784 PMCID: PMC9765005 DOI: 10.1128/aem.01593-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or β-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.
Collapse
|
9
|
Li J, Chen D, Yu B, He J, Huang Z, Zheng P, Mao X, Li H, Yu J, Luo J, Yan H, Luo Y. Batch and sampling time exert a larger influence on the fungal community than gastrointestinal location in model animals: A meaningful case study. Front Nutr 2022; 9:1021215. [PMID: 36419550 PMCID: PMC9676510 DOI: 10.3389/fnut.2022.1021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fungi play a fundamental role in the intestinal ecosystem and health, but our knowledge of fungal composition and distribution in the whole gastrointestinal tract (GIT) is very limited. The physiological similarity between humans and pigs in terms of digestive and associated metabolic processes places, the pig in a superior position over other non-primate models. Here, we aimed to characterize the diversity and composition of fungi in the GIT of pigs. Using high-throughput sequencing, we evaluated the fungal community in different locations of GIT of 11 pigs with 128.41 ± 1.25 kg body weight acquired successively. Among them, five pigs are sacrificed in April 2019 (Batch 1) and the other six are sacrificed in January 2020 (Batch 2). All subjects with similar genetic backgrounds, housing, management, and diet. Finally, no significant difference is found in the α-diversity (Richness) of the fungal community among all intestinal segments. Basidiomycota and Ascomycota are the two predominant fungal phyla, but Batch 1 harbored a notably high abundance of Basidiomycota and Batch 2 harbored a high abundance of Ascomycota. Moreover, the two batches harbored completely different fungal compositions and core fungal genera. FUNGuild (Fungal Functional Guild) analysis revealed that most of the fungal species present in the GIT are saprotroph, plant pathogen, and animal endosymbiont. Our study is the first to report that even under the same condition, large variations in fungal composition in the host GIT still occur from batch-to-batch and sampling time. The implications of our observations serve as references to the development of better models of the human gut.
Collapse
|
10
|
Devillers H, Sarilar V, Grondin C, Sterck L, Segond D, Jacques N, Sicard D, Casaregola S, Tinsley C. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519748. [PMID: 35106561 PMCID: PMC8825440 DOI: 10.1093/gbe/evac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have suggested that species of the Kazachstania genus may be interesting models of yeast domestication. Among these, Kazachstania barnettii has been isolated from various microbially transformed foodstuffs such as sourdough bread and kefir. In the present work, we sequence, assemble, and annotate the complete genomes of two K. barnettii strains: CLIB 433, being one of the two reference strains for K. barnettii that was isolated as a spoilage organism in soft drink, and CLIB 1767, recently isolated from artisan bread-making sourdough. Both assemblies are of high quality with N50 statistics greater than 1.3 Mb and BUSCO score greater than 99%. An extensive comparison of the two obtained genomes revealed very few differences between the two K. barnettii strains, considering both genome structure and gene content. The proposed genome assemblies will constitute valuable references for future comparative genomic, population genomic, or transcriptomic studies of the K. barnettii species.
Collapse
Affiliation(s)
- Hugo Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Corresponding author: E-mail:
| | - Véronique Sarilar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- French Armed Forces Biomedical Research Institute (IRBA), Department of Platforms and Technology Research, Molecular Biology Unit, Brétigny-sur-Orge, France
| | - Cécile Grondin
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Lieven Sterck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Diego Segond
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Noémie Jacques
- Université Paris-Saclay, INRAE, UMR BIOGER, Thiverval-Grignon, France
| | - Delphine Sicard
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Serge Casaregola
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Colin Tinsley
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
11
|
Cullen JT, Lawlor PG, Cormican P, Gardiner GE. Microbial Quality of Liquid Feed for Pigs and Its Impact on the Porcine Gut Microbiome. Animals (Basel) 2021; 11:ani11102983. [PMID: 34680002 PMCID: PMC8532943 DOI: 10.3390/ani11102983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Liquid feed is produced by mixing dry feed ingredients with water, and sometimes liquid co-products from the food and beverage industry, at a defined ratio. Liquid feeding of pigs is popular, particularly in parts of northern and western Europe, and can be associated with lower feed costs, improved dry matter intake, growth rate and gut health, compared to dry feeding. However, spontaneous/uncontrolled fermentation upon mixing of feed with water or co-products can decrease the microbial and nutritional quality of the feed, resulting in poorer pig health and growth. For this reason, strategies aimed at optimising liquid feed microbial quality are frequently employed. These include: deliberate fermentation with/without the use of lactic acid bacteria starter cultures that produce lactic acid and lower the feed pH, thereby preventing growth of pathogens. Fermenting only the cereal component of the diet is preferred to whole diet fermentation to minimise loss of free amino acids from the diet during fermentation. This review examines the microbiome of liquid feed and explores how optimisation strategies impact both feed microbial quality and the gut microbiota and growth of liquid-fed pigs. It also covers cleaning and disinfection of liquid feeding systems and how this might impact liquid feed microbial quality. Abstract There is evidence that spontaneous fermentation frequently occurs in liquid pig feed that is intended to be delivered as fresh liquid feed, often with a resultant deterioration in the microbial and nutritional quality of the feed, which can negatively affect pig health and growth. Strategies including controlled fermentation with microbial inoculants, pre-fermentation or soaking of the cereal fraction of the diet, enzyme supplementation and dietary acidification have been employed to inhibit pathogens and prevent deterioration of feed nutritional quality, with promising results obtained in many cases. This review evaluates the impact of these strategies on the microbial quality of liquid feed and discusses how they can be further improved. It also investigates if/how these strategies impact the pig gut microbiota and growth performance of liquid-fed pigs. Finally, we review liquid feed system sanitisation practices, which are highly variable from farm to farm and discuss the impact of these practices and whether they are beneficial or detrimental to liquid feed microbial quality. Overall, we provide a comprehensive review of the current state of knowledge on liquid feed for pigs, focusing on factors affecting microbial quality and strategies for its optimisation, as well as its impact on the pig gut microbiome.
Collapse
Affiliation(s)
- James T. Cullen
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
| | - Peadar G. Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Cork, Ireland;
| | - Paul Cormican
- Teagasc, Animal Bioscience Research Centre, Grange, Dunsany, Co. Meath, C15 PW93 Dublin, Ireland;
| | - Gillian E. Gardiner
- Department of Science, Waterford Institute of Technology, Co. Waterford, X91 K0EK Waterford, Ireland;
- Correspondence:
| |
Collapse
|
12
|
Draft Genome Sequence of Kazachstania slooffiae, Isolated from Postweaning Piglet Feces. Microbiol Resour Announc 2021; 10:e0019821. [PMID: 34435868 PMCID: PMC8388536 DOI: 10.1128/mra.00198-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kazachstania slooffiae is a dimorphic fungus which colonizes the feces and gastrointestinal tract of postweaning pigs. This fungus persists in the gut environment of piglets into adulthood and is implicated in porcine health through microbe-microbe and microbe-host interactions. Here, we report a draft genome sequence for K. slooffiae ABBL.
Collapse
|
13
|
Kong Q, Liu S, Li A, Wang Y, Zhang L, Iqbal M, Jamil T, Shang Z, Suo LS, Li J. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets. BMC Microbiol 2021; 21:204. [PMID: 34217216 PMCID: PMC8254304 DOI: 10.1186/s12866-021-02242-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diarrhea is an important ailment limiting the production of the Tibetan pig industry. Dynamic balance of the intestinal microbiota is important for the physiology of the animal. The objective of this work was to study fungal diversity in the feces of early weaning Tibetan piglets in different health conditions. RESULTS In the present study, we performed high-throughput sequencing to characterize the fungal microbial diversity in healthy, diarrheal and treated Tibetan piglets at the Tibet Autonomous Region of the People's Republic of China. The four alpha diversity indices (Chao1, ACE, Shannon and Simpson) revealed no significant differences in the richness across the different groups (P > 0.05). In all samples, the predominant fungal phyla were Ascomycota, Basidiomycota and Rozellomycota. Moreover, the healthy piglets showed a higher abundance of Ascomycota than the treated ones with a decreased level of Basidiomycota. One phylum (Rozellomycota) showed higher abundance in the diarrheal piglets than in the treated. At genus level, compared with that to the healthy group, the proportion of Derxomyces and Lecanicillium decreased, whereas that of Cortinarius and Kazachstania increased in the diarrheal group. The relative abundances of Derxomyces, Phyllozyma and Hydnum were higher in treated piglets than in the diarrheal ones. CONCLUSIONS A decreased relative abundance of beneficial fungi (e.g. Derxomyces and Lecanicillium) may cause diarrhea in the early-weaned Tibetan piglets. Addition of probiotics into the feed may prevent diarrhea at this stage. This study presented the fungal diversity in healthy, diarrheal and treated early-weaned Tibetan piglets.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China. .,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China.
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Lang-Sizhu Suo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.
| |
Collapse
|
14
|
Summers KL, Foster Frey J, Arfken AM. Characterization of Kazachstania slooffiae, a Proposed Commensal in the Porcine Gut. J Fungi (Basel) 2021; 7:jof7020146. [PMID: 33671322 PMCID: PMC7922399 DOI: 10.3390/jof7020146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Kazachstania slooffiae is a fungus commonly isolated from the gastrointestinal tract and feces of post-weaning pigs. Studies have implicated its ability to positively alter piglet gut health through potential symbioses with beneficial bacteria, including Lactobacillus and Prevotella, in providing amino acids as an energy source for microbial and piglet growth, and it has been found to be positively correlated with short-chain fatty acids in the piglet gut. However, basic mycological information remains limited, hampering in vitro studies. In this study, we characterized the growth parameters, biofilm formation ability, susceptibility to antimicrobials, and genetic relatedness of K. slooffiae to other fungal isolates. Optimal fungal growth conditions were determined, no antifungal resistance was found against multiple classes of antifungal drugs (azoles, echinocandins, polyenes, or pyrimidine analogues), and dimorphic growth was observed. K. slooffiae produced biofilms that became more complex in the presence of Lactobacillus acidophilus supernatant, suggesting positive interactions with this bacterium in the gut, while Enterococcus faecalis supernatant decreased density, suggesting an antagonistic interaction. This study characterizes the in vitro growth conditions that are optimal for further studies of K. slooffiae, which is an important step in defining the role and interactions of K. slooffiae in the porcine gut environment.
Collapse
|
15
|
Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S, Payungporn S. Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol 2020; 144:103468. [PMID: 32980453 DOI: 10.1016/j.fgb.2020.103468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Cynomolgus macaque (Macaca fascicularis) is currently a common animal model for biomedical research. The National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU) translocated wild-borne macaques to reared colony for research purposes. At present, no studies focus on fungal microbiome (Mycobiome) of this macaque. The functional roles of mycobiome and fungal pathogens have not been elucidated. Thus, this study aimed to investigate and compare oral and fecal mycobiome between wild and captive macaques by using high-throughput sequencing on internal transcribed spacer 2 (ITS2) rDNA. The results showed that the mycobiome of wild macaque has greater alpha diversity. The fecal mycobiome has more limited alpha diversity than those in oral cavity. The community is mainly dominated by saprophytic yeast in Kasachstania genus which is related to aiding metabolic function in gut. The oral microbiome of most captive macaques presented the Cutaneotrichosporon suggesting the fungal transmission through skin-oral contact within the colony. The potential pathogens that would cause harmful transmission in reared colonies were not found in either group of macaques but the pathogen prevention and animal care is still important to be concerned. In conclusion, the results of gut mycobiome analysis in Thai cynomolgus macaques provide us with the basic information of oral and fecal fungi and for monitoring macaque's health status for animal care of research use.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Khamwut
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand; Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Arfken AM, Frey JF, Summers KL. Temporal Dynamics of the Gut Bacteriome and Mycobiome in the Weanling Pig. Microorganisms 2020; 8:E868. [PMID: 32526857 PMCID: PMC7356342 DOI: 10.3390/microorganisms8060868] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
Weaning is a period of environmental changes and stress that results in significant alterations to the piglet gut microbiome and is associated with a predisposition to disease, making potential interventions of interest to the swine industry. In other animals, interactions between the bacteriome and mycobiome can result in altered nutrient absorption and susceptibility to disease, but these interactions remain poorly understood in pigs. Recently, we assessed the colonization dynamics of fungi and bacteria in the gastrointestinal tract of piglets at a single time point post-weaning (day 35) and inferred interactions were found between fungal and bacterial members of the porcine gut ecosystem. In this study, we performed a longitudinal assessment of the fecal bacteriome and mycobiome of piglets from birth through the weaning transition. Piglet feces in this study showed a dramatic shift over time in the bacterial and fungal communities, as well as an increase in network connectivity between the two kingdoms. The piglet fecal bacteriome showed a relatively stable and predictable pattern of development from Bacteroidaceae to Prevotellaceae, as seen in other studies, while the mycobiome demonstrated a loss in diversity over time with a post-weaning population dominated by Saccharomycetaceae. The mycobiome demonstrated a more transient community that is likely driven by factors such as diet or environmental exposure rather than an organized pattern of colonization and succession evidenced by fecal sample taxonomic clustering with nursey feed samples post-weaning. Due to the potential tractability of the community, the mycobiome may be a viable candidate for potential microbial interventions that will alter piglet health and growth during the weaning transition.
Collapse
Affiliation(s)
| | | | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (A.M.A.); (J.F.F.)
| |
Collapse
|
17
|
Ramayo-Caldas Y, Prenafeta-Boldú F, Zingaretti LM, Gonzalez-Rodriguez O, Dalmau A, Quintanilla R, Ballester M. Gut eukaryotic communities in pigs: diversity, composition and host genetics contribution. Anim Microbiome 2020; 2:18. [PMID: 33499953 PMCID: PMC7807704 DOI: 10.1186/s42523-020-00038-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pig gut microbiome harbors thousands of species of archaea, bacteria, viruses and eukaryotes such as protists and fungi. However, since the majority of published studies have been focused on prokaryotes, little is known about the diversity, host-genetic control, and contributions to host performance of the gut eukaryotic counterparts. Here we report the first study that aims at characterizing the diversity and composition of gut commensal eukaryotes in pigs, exploring their putative control by host genetics, and analyzing their association with piglets body weight. RESULTS Fungi and protists from the faeces of 514 healthy Duroc pigs of two sexes and two different ages were characterized by 18S and ITS ribosomal RNA gene sequencing. The pig gut mycobiota was dominated by yeasts, with a high prevalence and abundance of Kazachstania spp. Regarding protists, representatives of four genera (Blastocystis, Neobalantidium, Tetratrichomonas and Trichomitus) were predominant in more than the 80% of the pigs. Heritabilities for the diversity and abundance of gut eukaryotic communities were estimated with the subset of 60d aged piglets (N = 390). The heritabilities of α-diversity and of the abundance of fungal and protists genera were low, ranging from 0.15 to 0.28. A genome wide association study reported genetic variants related to the fungal α-diversity and to the abundance of Blastocystis spp. Annotated candidate genes were mainly associated with immunity, gut homeostasis and metabolic processes. Additionally, we explored the association of gut commensal eukaryotes with piglet body weight. Our results pointed to a positive contribution of fungi from the Kazachstania genus, while protists displayed both positive (Blastocystis and Entamoeba) and negative (Trichomitus) associations with piglet body weight. CONCLUSIONS Our results point towards a minor and taxa specific genetic control over the diversity and composition of the pig gut eukaryotic communities. Moreover, we provide evidences of the associations between piglets' body weight after weaning and members from the gut fungal and protist eukaryote community. Overall, this study highlights the relevance of considering, along with that of bacteria, the contribution of the gut eukaryote communities to better understand host-microbiome association and their role on pig performance, welfare and health.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | | | - Laura M. Zingaretti
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - Olga Gonzalez-Rodriguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Antoni Dalmau
- Animal Welfare Subprogram, IRTA, 17121 Monells, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| |
Collapse
|
18
|
Summers KL, Frey JF, Ramsay TG, Arfken AM. The piglet mycobiome during the weaning transition: a pilot study1. J Anim Sci 2019; 97:2889-2900. [PMID: 31136650 DOI: 10.1093/jas/skz182] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of the microbiota in the gastrointestinal tract of animals is recognized as a critical player in host health. Recently, the significance of the mycobiome has been recognized, but culture-independent studies are limited, especially in swine. Weaning is a time of stress, dietary changes, and a predisposition to infections, making it a time point of interest to industry. In this pilot study, we sought to assess and characterize the mycobiome in the feces of swine from birth through the critical weaning transition to investigate the mycobiome population and its temporal dynamics in piglet feces. Cultured fecal samples demonstrate a significant increase in fungal burden following weaning that does not differ from adult levels, suggesting stable colonization. Culturable fungi were not found in any environmental samples tested, including water, food, sow milk or colostrum. To determine the fungal diversity present and to address the problem of unculturable fungi, we performed a pilot study utilizing ITS and 16S rRNA focused primers for high-throughput sequencing of fungal and bacterial species, respectively. Bacterial populations increase in diversity over the experimental timeline (days 1 to 35 postbirth), but the fungal populations do not demonstrate the same temporal trend. Following weaning, there is a dynamic shift in the feces to a Saccharomycetaceae-dominated population. The shift in fungal population was because of the dominance of Kazachstania slooffiae, a poorly characterized colonizer of animal gastrointestinal tracts. This study provides insights into the early colonization and subsequent establishment of fungi during the weaning transition in piglets. Future studies will investigate the effect of the mycobiome on piglet growth and health during the weaning transition.
Collapse
Affiliation(s)
- Katie L Summers
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | - Timothy G Ramsay
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | - Ann M Arfken
- Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD
| |
Collapse
|
19
|
White JK, Nielsen JL, Madsen AM. Microbial species and biodiversity in settling dust within and between pig farms. ENVIRONMENTAL RESEARCH 2019; 171:558-567. [PMID: 30771719 DOI: 10.1016/j.envres.2019.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 05/14/2023]
Abstract
The airborne fungal and bacterial species present in pig farm dust have not been well characterised even though these bioaerosols are known to cause inflammation and other airway maladies. In this study, the microbial species and composition in airborne dust within and between pig farms were investigated. Passively sedimenting dust from six pig farms were collected using electrostatic dust collectors. The bacterial and fungal species were identified using matrix-assisted laser desorption-ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and next generation sequencing (NGS). Dust samples taken within the same stable section revealed high resemblance and stability. Constrained statistical analysis of the microbial community compositions indicated that the types of stable did not appear to have a great effect on the bacterial and fungal β-diversity. In contrast to this, the farm from which samples were taken appeared to have the greatest effect on the bacterial β-diversity, but this trend was not observed for the fungal β-diversity. The most common bacteria and fungi according to NGS data were anaerobes typically associated with the pig intestinal tract and yeasts respectively. Bacterial sedimentation varied at a rate between 103 and 109 CFU/m2/day, with the most common species after aerobic incubation being Aerococcus viridans and Staphylococcus equorum, while Clostridium perfringens and Staphylococcus simulans were the most common species after anaerobic incubation. A total of 28 different species of bacteria and fungi were classifiable as pathogens. In conclusion, the biodiversity in pig farm dust shows a high diversity of bacterial species. However, samples from the same stable section resembled each other, but also different sections within the same farm also resembled each other, thus indicating a high degree of community stability in the dust source. In regards to fungal identification, the biodiversity was observed to be similar between samples from different stable sections and farms, indicating a higher degree of similarities in the mycobiomes found across pig farms studied.
Collapse
Affiliation(s)
- John Kerr White
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7 H, 9220 Aalborg Ø, Denmark; The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7 H, 9220 Aalborg Ø, Denmark.
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|