1
|
Sumiya N. Coordination mechanism of cell and cyanelle division in the glaucophyte alga Cyanophora sudae. PROTOPLASMA 2022; 259:855-867. [PMID: 34553240 DOI: 10.1007/s00709-021-01704-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In unicellular algae with a single chloroplast, two mechanisms coordinate cell and chloroplast division: the S phase-specific expression of chloroplast division genes and the permission of cell cycle progression from prophase to metaphase by the onset of chloroplast division. This study investigated whether a similar mechanism exists in a unicellular alga with multiple chloroplasts using the glaucophyte alga Cyanophora sudae, which contains four chloroplasts (cyanelles). Cells with eight cyanelles appeared after the S phase arrest with a topoisomerase inhibitor camptothecin, suggesting that the mechanism of S phase-specific expression of cyanelle division genes was conserved in this alga. Inhibition of peptidoglycan synthesis by β-lactam antibiotic ampicillin arrested cells in the S-G2 phase, and inhibition of septum invagination with cephalexin resulted in cells with two nuclei and one cyanelle, despite inhibition of cyanelle division. This indicates that even in the unicellular alga with four chloroplasts, the cell cycle progresses to the M phase following the progression of chloroplast division to a certain division stage. These results suggested that C. sudae has two mechanisms for coordinating cell and cyanelle division, similar to the unicellular algae with a single chloroplast.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
2
|
Russell S, Jackson C, Reyes-Prieto A. High Sequence Divergence but Limited Architectural Rearrangements in Organelle Genomes of Cyanophora (Glaucophyta) Species. J Eukaryot Microbiol 2020; 68:e12831. [PMID: 33142007 DOI: 10.1111/jeu.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Cyanophora is the glaucophyte model taxon. Following the sequencing of the nuclear genome of C. paradoxa, studies based on single organelle and nuclear molecular markers revealed previously unrecognized species diversity within this glaucophyte genus. Here, we present the complete plastid (ptDNA) and mitochondrial (mtDNA) genomes of C. kugrensii, C. sudae, and C. biloba. The respective sizes and coding capacities of both ptDNAs and mtDNAs are conserved among Cyanophora species with only minor differences due to specific gene duplications. Organelle phylogenomic analyses consistently recover the species C. kugrensii and C. paradoxa as a clade and C. sudae and C. biloba as a separate group. The phylogenetic affiliations of the four Cyanophora species are consistent with architectural similarities shared at the organelle genomic level. Genetic distance estimations from both organelle sequences are also consistent with phylogenetic and architecture evidence. Comparative analyses confirm that the Cyanophora mitochondrial genes accumulate substitutions at 3-fold higher rates than plastid counterparts, suggesting that mtDNA markers are more appropriate to investigate glaucophyte diversity and evolutionary events that occur at a population level. The study of complete organelle genomes is becoming the standard for species delimitation and is particularly relevant to study cryptic diversity in microbial groups.
Collapse
Affiliation(s)
- Sarah Russell
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher Jackson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Royal Botanic Gardens Victoria, Melbourne, Vic., Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
3
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
4
|
Goodenough U, Roth R, Kariyawasam T, He A, Lee JH. Epiplasts: Membrane Skeletons and Epiplastin Proteins in Euglenids, Glaucophytes, Cryptophytes, Ciliates, Dinoflagellates, and Apicomplexans. mBio 2018; 9:e02020-18. [PMID: 30377285 PMCID: PMC6212826 DOI: 10.1128/mbio.02020-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Animals and amoebae assemble actin/spectrin-based plasma membrane skeletons, forming what is often called the cell cortex, whereas euglenids and alveolates (ciliates, dinoflagellates, and apicomplexans) have been shown to assemble a thin, viscoelastic, actin/spectrin-free membrane skeleton, here called the epiplast. Epiplasts include a class of proteins, here called the epiplastins, with a head/medial/tail domain organization, whose medial domains have been characterized in previous studies by their low-complexity amino acid composition. We have identified two additional features of the medial domains: a strong enrichment of acid/base amino acid dyads and a predicted β-strand/random coil secondary structure. These features have served to identify members in two additional unicellular eukaryotic radiations-the glaucophytes and cryptophytes-as well as additional members in the alveolates and euglenids. We have analyzed the amino acid composition and domain structure of 219 epiplastin sequences and have used quick-freeze deep-etch electron microscopy to visualize the epiplasts of glaucophytes and cryptophytes. We define epiplastins as proteins encoded in organisms that assemble epiplasts, but epiplastin-like proteins, of unknown function, are also encoded in Insecta, Basidiomycetes, and Caulobacter genomes. We discuss the diverse cellular traits that are supported by epiplasts and propose evolutionary scenarios that are consonant with their distribution in extant eukaryotes.IMPORTANCE Membrane skeletons associate with the inner surface of the plasma membrane to provide support for the fragile lipid bilayer and an elastic framework for the cell itself. Several radiations, including animals, organize such skeletons using actin/spectrin proteins, but four major radiations of eukaryotic unicellular organisms, including disease-causing parasites such as Plasmodium, have been known to construct an alternative and essential skeleton (the epiplast) using a class of proteins that we term epiplastins. We have identified epiplastins in two additional radiations and present images of their epiplasts using electron microscopy. We analyze the sequences and secondary structure of 219 epiplastins and present an in-depth overview and analysis of their known and posited roles in cellular organization and parasite infection. An understanding of epiplast assembly may suggest therapeutic approaches to combat infectious agents such as Plasmodium as well as approaches to the engineering of useful viscoelastic biofilms.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Robyn Roth
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amelia He
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Heiss AA, Heiss AW, Lukacs K, Kim E. The flagellar apparatus of the glaucophyte Cyanophora cuspidata. JOURNAL OF PHYCOLOGY 2017; 53:1120-1150. [PMID: 28741699 DOI: 10.1111/jpy.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 05/16/2023]
Abstract
Glaucophytes are a kingdom-scale lineage of unicellular algae with uniquely underived plastids. The genus Cyanophora is of particular interest because it is the only glaucophyte that is a flagellate throughout its life cycle, making its morphology more directly comparable than other glaucophytes to other eukaryote flagellates. The ultrastructure of Cyanophora has already been studied, primarily in the 1960s and 1970s. However, the usefulness of that work has been undermined by its own limitations, subsequent misinterpretations, and a recent taxonomic revision of the genus. For example, Cyanophora's microtubular roots have been widely reported as cruciate, with rotationally symmetrical wide and thin roots, although the first ultrastructural work described it as having three wide and one narrow root. We examine Cyanophora cuspidata using scanning and transmission electron microscopy, and construct a model of its cytoskeleton using serial-section TEM. We confirm the earlier model, with asymmetric roots. We describe previously unknown and unsuspected features of its microtubular roots, including (i) a rearrangement of individual microtubules within the posterior right root, (ii) a splitting of the posterior left root into two subroots, and (iii) the convergence and termination of the narrow roots against wider ones in both the anterior and posterior subsystems of the flagellar apparatus. We also describe a large complement of nonmicrotubular components of the cytoskeleton, including a substantial connective between the posterior right root and the anterior basal body. Our work should serve as the starting point for a re-examination of both internal glaucophyte diversity and morphological evolution in eukaryotes.
Collapse
Affiliation(s)
- Aaron A Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Alaric W Heiss
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Kaleigh Lukacs
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, New York, 10024, USA
| |
Collapse
|
6
|
Lee J, Cho CH, Park SI, Choi JW, Song HS, West JA, Bhattacharya D, Yoon HS. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biol 2016; 14:75. [PMID: 27589960 PMCID: PMC5010701 DOI: 10.1186/s12915-016-0299-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
Background The red algae (Rhodophyta) diverged from the green algae and plants (Viridiplantae) over one billion years ago within the kingdom Archaeplastida. These photosynthetic lineages provide an ideal model to study plastid genome reduction in deep time. To this end, we assembled a large dataset of the plastid genomes that were available, including 48 from the red algae (17 complete and three partial genomes produced for this analysis) to elucidate the evolutionary history of these organelles. Results We found extreme conservation of plastid genome architecture in the major lineages of the multicellular Florideophyceae red algae. Only three minor structural types were detected in this group, which are explained by recombination events of the duplicated rDNA operons. A similar high level of structural conservation (although with different gene content) was found in seed plants. Three major plastid genome architectures were identified in representatives of 46 orders of angiosperms and three orders of gymnosperms. Conclusions Our results provide a comprehensive account of plastid gene loss and rearrangement events involving genome architecture within Archaeplastida and lead to one over-arching conclusion: from an ancestral pool of highly rearranged plastid genomes in red and green algae, the aquatic (Florideophyceae) and terrestrial (seed plants) multicellular lineages display high conservation in plastid genome architecture. This phenomenon correlates with, and could be explained by, the independent and widely divergent (separated by >400 million years) origins of complex sexual cycles and reproductive structures that led to the rapid diversification of these lineages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0299-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Suk Song
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics. Sci Rep 2016; 6:29209. [PMID: 27383831 PMCID: PMC4935853 DOI: 10.1038/srep29209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology was established in the 17th century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy.
Collapse
|
8
|
Takahashi T, Nishida T, Saito C, Yasuda H, Nozaki H. A new type of 3-D peripheral ultrastructure in Glaucocystis (Glaucocystales, Glaucophyta) as revealed by ultra-high voltage electron microscopy. JOURNAL OF PHYCOLOGY 2016; 52:486-490. [PMID: 27273537 DOI: 10.1111/jpy.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Chieko Saito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidehiro Yasuda
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Takahashi T, Nishida T, Saito C, Yasuda H, Nozaki H. Ultra-high voltage electron microscopy of primitive algae illuminates 3D ultrastructures of the first photosynthetic eukaryote. Sci Rep 2015; 5:14735. [PMID: 26439276 PMCID: PMC4593968 DOI: 10.1038/srep14735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/07/2015] [Indexed: 12/03/2022] Open
Abstract
A heterotrophic organism 1–2 billion years ago enslaved a cyanobacterium to become the first photosynthetic eukaryote, and has diverged globally. The primary phototrophs, glaucophytes, are thought to retain ancestral features of the first photosynthetic eukaryote, but examining the protoplast ultrastructure has previously been problematic in the coccoid glaucophyte Glaucocystis due to its thick cell wall. Here, we examined the three-dimensional (3D) ultrastructure in two divergent species of Glaucocystis using ultra-high voltage electron microscopy. Three-dimensional modelling of Glaucocystis cells using electron tomography clearly showed that numerous, leaflet-like flattened vesicles are distributed throughout the protoplast periphery just underneath a single-layered plasma membrane. This 3D feature is essentially identical to that of another glaucophyte genus Cyanophora, as well as the secondary phototrophs in Alveolata. Thus, the common ancestor of glaucophytes and/or the first photosynthetic eukaryote may have shown similar 3D structures.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Chieko Saito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidehiro Yasuda
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|