1
|
Liu F, Liang L, Luo Z, Zhang G, Zuo F, Wang L. Effects of taurine on metabolomics of bovine mammary epithelial cells under high temperature conditions. Front Vet Sci 2024; 11:1393276. [PMID: 38915889 PMCID: PMC11194699 DOI: 10.3389/fvets.2024.1393276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
High temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Feifei Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Liang Liang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
2
|
Provera I, Martinez M, Zenone A, Giacalone VM, D'Anna G, Badalamenti F, Marín-Guirao L, Procaccini G. Exploring priming strategies to improve stress resilience of Posidonia oceanica seedlings. MARINE POLLUTION BULLETIN 2024; 200:116057. [PMID: 38301434 DOI: 10.1016/j.marpolbul.2024.116057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Seagrasses' ability to store information after exposure to stress (i.e. stress memory) and to better respond to further stress (i.e. priming) have recently been observed, although the temporal persistence of the memory and the mechanisms for priming induction remain to be defined. Here, we explored three priming strategies in Posidonia oceanica seedlings, each inducing a different level of stress, for temperature and salinity. We investigated changes in morphometry, growth rate and biomass between primed and non-primed seedlings. The results showed similar behaviour of seedlings when exposed to an acute stress event, regardless of whether they had been primed or not and of the priming strategy received. This opens the debate on the level of stress necessary for inducing a priming status and the persistence of the stress memory in P. oceanica seedlings. Although no priming-induced stress resistance was observed, seedlings showed unexpectedly high resilience to extreme levels of both abiotic stressors.
Collapse
Affiliation(s)
- I Provera
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - M Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy
| | - A Zenone
- Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - V M Giacalone
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via del Mare 3, 91021 Torretta Granitola, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - G D'Anna
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), via Giovanni da Verrazzano 17, 91014 Castellammare del Golfo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - F Badalamenti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - L Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Centro Oceanográfico de Murcia (IEO-CSIC), Varadero 1, 30740 San Pedro del Pinatar, Spain
| | - G Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| |
Collapse
|
3
|
Sato N, Khoa HV, Mikami K. Heat stress memory differentially regulates the expression of nitrogen transporter genes in the filamentous red alga ' Bangia' sp. ESS1. FRONTIERS IN PLANT SCIENCE 2024; 15:1331496. [PMID: 38375079 PMCID: PMC10875135 DOI: 10.3389/fpls.2024.1331496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Introduction To withstand high temperatures that would be lethal to a plant in the naïve state, land plants must establish heat stress memory. The acquisition of heat stress tolerance via heat stress memory in algae has only been observed in the red alga 'Bangia' sp. ESS1. Methods In this study, we further evaluated the intrinsic ability of this alga to establish heat stress memory by monitoring hydrogen peroxide (H2O2) production and examining the relationship between heat stress memory and the expression of genes encoding nitrogen transporters, since heat stress generally reduces nitrogen absorption. Next, genes encoding nitrogen transporters were selected from our unpublished transcriptome data of 'Bangia' sp. ESS1. Results We observed a reduction in H2O2 content when heat stress memory was established in the alga. In addition, six ammonium transporter genes, a single-copy nitrate transporter gene and two urea transporter genes were identified. Two of these nitrogen transporter genes were induced by heat stress but not by heat stress memory, two genes showed heat stress memory-dependent expression, and one gene was induced by both treatments. Heat stress memory therefore differentially regulated the expression of the nitrogen transporter genes by reducing heat stress-inducible gene expression and inducing heat stress memory-dependent gene expression. Discussion These findings point to the functional diversity of nitrogen transporter genes, which play different roles under various heat stress conditions. The characteristic effects of heat stress memory on the expression of individual nitrogen transporter genes might represent an indispensable strategy for reducing the threshold of sensitivity to recurrent high-temperature conditions and for maintaining nitrogen absorption under such conditions in 'Bangia' sp. ESS1.
Collapse
Affiliation(s)
- Natsumi Sato
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Ho Viet Khoa
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| |
Collapse
|
4
|
Qian W, Zhu Y, Chen Q, Wang S, Chen L, Liu T, Tang H, Yao H. Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1132881. [PMID: 37063208 PMCID: PMC10090499 DOI: 10.3389/fpls.2023.1132881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Temperature affects seed germination and seedling growth, which is a critical and complex stage in plant life cycle. However, comprehensive metabolic basis on temperature implicating seed germination and seedling growth remains less known. Here, we applied the high-throughput untargeted metabolomic and advanced shotgun lipidomic approaches to profile the Arabidopsis 182 metabolites and 149 lipids under moderate (22°C, 28°C) and extreme high (34°C, 40°C) temperatures. Our results showed that a typical feature of the metabolism related to organic acids/derivates and amines was obviously enriched at the moderate temperature, which was implicated in many cellular responses towards tricarboxylic acid cycle (TCA), carbohydrates and amino acids metabolism, peptide biosynthesis, phenylpropanoid biosynthesis and indole 3-acetate (IAA) biosynthetic pathway. Whereas, under extreme high temperatures, there was no seed germination, but 148 out of total 182 metabolites were highly enriched, involving in the galactose metabolism, fatty acid degradation, tryptophan/phenylalanine metabolism, and shikimic acid-mediated pathways especially including alkaloids metabolism and glucosinolate/flavone/flavonol biosynthesis. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) also exhibited the gradually increased tendency from moderate temperatures to extreme high temperatures; whereas phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG) were contrary to decrease. Another typical feature of the distinguished metabolites between 22°C and 28°C, the TCA, disaccharides, nucleotides, polypeptides, SQDG and the biosynthesis of fatty acids and glucobrassicin-mediated IAA were obviously decreased at 28°C, while amino acids, trisaccharides, PE, PC, PA, PS, MGDG, DGDG and diacylglycerol (DAG) preferred to enrich at 28°C, which characterized the alteration of metabolites and lipids during fast seedling growth. Taking together, our results provided the comprehensive metabolites phenotyping, revealed the characteristics of metabolites necessary for seed germination and/or seedling growth under different temperatures, and provided insights into the different metabolic regulation of metabolites and lipid homeostasis for seed germination and seedling growth.
Collapse
Affiliation(s)
- Wenjuan Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxuan Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinsheng Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuaiyao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Longlong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Liu
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mikami K, Takahashi M. Life cycle and reproduction dynamics of Bangiales in response to environmental stresses. Semin Cell Dev Biol 2023; 134:14-26. [PMID: 35428563 DOI: 10.1016/j.semcdb.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Red algae of the order Bangiales are notable for exhibiting flexible promotion of sexual and asexual reproductive processes by environmental stresses. This flexibility indicates that a trade-off between vegetative growth and reproduction occurs in response to environmental stresses that influence the timing of phase transition within the life cycle. Despite their high phylogenetic divergence, both filamentous and foliose red alga in the order Bangiales exhibit a haploid-diploid life cycle, with a haploid leafy or filamentous gametophyte (thallus) and a diploid filamentous sporophyte (conchocelis). Unlike haploid-diploid life cycles in other orders, the gametophyte in Bangiales is generated independently of meiosis; the regulation of this generation transition is not fully understood. Based on transcriptome and gene expression analyses, the originally proposed biphasic model for alternation of generations in Bangiales was recently updated to include a third stage. Along with the haploid gametophyte and diploid sporophyte, the triphasic framework recognizes a diploid conchosporophyte-a conchosporangium generated on the conchocelis-phase and previously considered to be part of the sporophyte. In addition to this sexual life cycle, some Bangiales species have an asexual life cycle in which vegetative cells of the thallus develop into haploid asexual spores, which are then released from the thallus to produce clonal thalli. Here, we summarize the current knowledge of the triphasic life cycle and life cycle trade-off in Neopyropia yezoensis and 'Bangia' sp. as model organisms for the Bangiales.
Collapse
Affiliation(s)
- Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, Sendai, Japan.
| | - Megumu Takahashi
- Department of Ocean and Fisheries Sciences, Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
6
|
Sharma M, Kumar P, Verma V, Sharma R, Bhargava B, Irfan M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:10-24. [PMID: 35305363 DOI: 10.1016/j.plaphy.2022.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
As sessile species and without the possibility of escape, plants constantly face numerous environmental stresses. To adapt in the external environmental cues, plants adjust themselves against such stresses by regulating their physiological, metabolic and developmental responses to external environmental cues. Certain environmental stresses rarely occur during plant life, while others, such as heat, drought, salinity, and cold are repetitive. Abiotic stresses are among the foremost environmental variables that have hindered agricultural production globally. Through distinct mechanisms, these stresses induce various morphological, biochemical, physiological, and metabolic changes in plants, directly impacting their growth, development, and productivity. Subsequently, plant's physiological, metabolic, and genetic adjustments to the stress occurrence provide necessary competencies to adapt, survive and nurture a condition known as "memory." This review emphasizes the advancements in various epigenetic-related chromatin modifications, DNA methylation, histone modifications, chromatin remodeling, phytohormones, and microRNAs associated with abiotic stress memory. Plants have the ability to respond quickly to stressful situations and can also improve their defense systems by retaining and sustaining stressful memories, allowing for stronger or faster responses to repeated stressful situations. Although there are relatively few examples of such memories, and no clear understanding of their duration, taking into consideration plenty of stresses in nature. Understanding these mechanisms in depth could aid in the development of genetic tools to improve breeding techniques, resulting in higher agricultural yield and quality under changing environmental conditions.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vipasha Verma
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Membrane-Fluidization-Dependent and -Independent Pathways Are Involved in Heat-Stress-Inducible Gene Expression in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11091486. [PMID: 35563791 PMCID: PMC9100149 DOI: 10.3390/cells11091486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heat stress responses are complex regulatory processes, including sensing, signal transduction, and gene expression. However, the exact mechanisms of these processes in seaweeds are not well known. We explored the relationship between membrane physical states and gene expression in the red alga Neopyropia yezoensis. To analyze heat-stress-induced gene expression, we identified two homologs of the heat-inducible high temperature response 2 (HTR2) gene in Neopyropia seriata, named NyHTR2 and NyHTR2L. We found conservation of HTR2 homologs only within the order Bangiales; their products contained a novel conserved cysteine repeat which we designated the Bangiales cysteine-rich motif. A quantitative mRNA analysis showed that expression of NyHTR2 and NyHTR2L was induced by heat stress. However, the membrane fluidizer benzyl alcohol (BA) did not induce expression of these genes, indicating that the effect of heat was not due to membrane fluidization. In contrast, expression of genes encoding multiprotein-bridging factor 1 (NyMBF1) and HSP70s (NyHSP70-1 and NyHSP70-2) was induced by heat stress and by BA, indicating that it involved a membrane-fluidization-dependent pathway. In addition, dark treatment under heat stress promoted expression of NyHTR2, NyHTR2L, NyMBF1, and NyHSP70-2, but not NyHSP70-1; expression of NyHTR2 and NyHTR2L was membrane-fluidization-independent, and that of other genes was membrane-fluidization-dependent. These findings indicate that the heat stress response in N. yezoensis involves membrane-fluidization-dependent and -independent pathways.
Collapse
|
8
|
Mikami K. Research on the Regulatory Mechanism of Algae Reproduction under Abiotic Stress Conditions. PLANTS 2022; 11:plants11040525. [PMID: 35214857 PMCID: PMC8874766 DOI: 10.3390/plants11040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
| |
Collapse
|
9
|
Khoa HV, Kumari P, Uchida H, Murakami A, Shimada S, Mikami K. Heat-Stress Responses Differ among Species from Different ' Bangia' Clades of Bangiales (Rhodophyta). PLANTS 2021; 10:plants10081733. [PMID: 34451778 PMCID: PMC8412102 DOI: 10.3390/plants10081733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
The red alga ‘Bangia’ sp. ESS1, a ‘Bangia’ 2 clade member, responds to heat stress via accelerated asexual reproduction and acquires thermotolerance based on heat-stress memory. However, whether these strategies are specific to ‘Bangia’ 2, especially ‘Bangia’ sp. ESS1, or whether they are employed by all ‘Bangia’ species is currently unknown. Here, we examined the heat-stress responses of ‘Bangia’ sp. ESS2, a newly identified ‘Bangia’ clade 3 member, and Bangia atropurpurea. Intrinsic thermotolerance differed among species: Whereas ‘Bangia’ sp. ESS1 survived at 30 °C for 7 days, ‘Bangia’ sp. ESS2 and B. atropurpurea did not, with B. atropurpurea showing the highest heat sensitivity. Under sublethal heat stress, the release of asexual spores was highly repressed in ‘Bangia’ sp. ESS2 and completely repressed in B. atropurpurea, whereas it was enhanced in ‘Bangia’ sp. ESS1. ‘Bangia’ sp. ESS2 failed to acquire heat-stress tolerance under sublethal heat-stress conditions, whereas the acquisition of heat tolerance by priming with sublethal high temperatures was observed in both B. atropurpurea and ‘Bangia’ sp. ESS1. Finally, unlike ‘Bangia’ sp. ESS1, neither ‘Bangia’ sp. ESS2 nor B. atropurpurea acquired heat-stress memory. These findings provide insights into the diverse heat-stress response strategies among species from different clades of ‘Bangia’.
Collapse
Affiliation(s)
- Ho Viet Khoa
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan;
| | - Puja Kumari
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan;
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK
| | - Hiroko Uchida
- Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji 656-2401, Japan; (H.U.); (A.M.)
| | - Akio Murakami
- Kobe University Research Center for Inland Seas, 2746 Iwaya, Awaji 656-2401, Japan; (H.U.); (A.M.)
- Graduate School of Science, Department of Biology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Satoshi Shimada
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
- Correspondence:
| |
Collapse
|
10
|
Hackerott S, Martell HA, Eirin-Lopez JM. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol Evol 2021; 36:1011-1023. [PMID: 34366170 DOI: 10.1016/j.tree.2021.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The apparent ability of corals to acquire and maintain enhanced stress tolerance through a dose-dependent environmental memory, which may persist for multiple years, has critical implications for coral reef conservation research. Such responses are variable across coral species and environmental stressors, with primed corals exhibiting a modified response to secondary stress exposures. While the mechanisms underlying coral memory responses are poorly understood, they likely involve both the coral host and microbiome. With advances in molecular technologies, it is now possible to investigate potential memory mechanisms in non-model organisms, including transcriptional regulation through epigenetic modifications. We integrate evidence of coral environmental memory and suggest future research directions to evaluate the potential for this process to enhance coral resilience under climate change.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA
| | - Harmony A Martell
- Climate and Coastal Ecosystem Laboratory, Department of Geography & Institute of Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA.
| |
Collapse
|
11
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
12
|
The Absence of Hydrodynamic Stress Promotes Acquisition of Freezing Tolerance and Freeze-Dependent Asexual Reproduction in the Red Alga ' Bangia' sp. ESS1. PLANTS 2021; 10:plants10030465. [PMID: 33804533 PMCID: PMC8001874 DOI: 10.3390/plants10030465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
The ebb tide causes calm stress to intertidal seaweeds in tide pools; however, little is known about their physiological responses to loss of water movement. This study investigated the effects of static culture of ‘Bangia’ sp. ESS1 at 15 °C on tolerance to temperature fluctuation. The freezing of aer-obically cultured thalli at −80 °C for 10 min resulted in the death of most cells. By contrast, statically cultured thalli acquired freezing tolerance that increased cell viability after freeze–thaw cycles, although they did not achieve thermotolerance that would enable survival at the lethal temperature of 32 °C. Consistently, the unsaturation of membrane fatty acids occurred in static culture. Notably, static culture of thalli enhanced the release of asexual spores after freeze-and-thaw treatment. We conclude that calm stress triggers both the acquisition of freezing tolerance and the promotion of freezing-dependent asexual reproduction. These findings provide novel insights into stress toler-ance and the regulation of asexual reproduction in Bangiales.
Collapse
|
13
|
Li H, Huang X, Zhan A. Stress Memory of Recurrent Environmental Challenges in Marine Invasive Species: Ciona robusta as a Case Study. Front Physiol 2020; 11:94. [PMID: 32116797 PMCID: PMC7031352 DOI: 10.3389/fphys.2020.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Fluctuating environmental changes impose tremendous stresses on sessile organisms in marine ecosystems, in turn, organisms develop complex response mechanisms to keep adaptive homeostasis for survival. Physiological plasticity is one of the primary lines of defense against environmental challenges, and such defense often relies on the antioxidant defense system (ADS). Hence, it is imperative to understand response mechanisms of ADS to fluctuating environments. Invasive species provide excellent models to study how species cope with environmental stresses, as invasive species encounter sudden, and often recurrent, extensive environmental challenges during the whole invasion process. Here, we studied the roles of ADS on rapid response to recurrent cold challenges in a highly invasive tunicate (Ciona robusta) by simulating cold stresses during its invasion process. We assessed antioxidative indicators, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), as well as transcriptional changes of ADS-related genes to reveal the physiological plasticity under recurring cold stresses. Our results demonstrated that physiological homeostasis relied on the resilience of ADS, which further accordingly tuned antioxidant activity and gene expression to changing environments. The initial cold stress remodeled baselines of ADS to promote the development of stress memory, and subsequent stress memory largely decreased the physiological response to recurrent environmental challenges. All results here suggest that C. robusta could develop stress memory to maintain physiological homeostasis in changing or harsh environments. The results obtained in this study provide new insights into the mechanism of rapid physiological adaption during biological invasions.
Collapse
Affiliation(s)
- Hanxi Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xuena Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|