1
|
Terpis KX, Salomaki ED, Barcytė D, Pánek T, Verbruggen H, Kolisko M, Bailey JC, Eliáš M, Lane CE. Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics. Curr Biol 2025; 35:483-499.e8. [PMID: 39793566 DOI: 10.1016/j.cub.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date. We employed a combination of approaches to reconstruct and critically evaluate the relationships among ochrophytes. While generally congruent with previous analyses, the updated ochrophyte phylogenomic tree resolved the position of several taxa with previously uncertain placement and supported a redefinition of the classes Picophagea and Synchromophyceae. Our results indicated that the heterotrophic, plastid-lacking heliozoan Actinophrys sol is not a sister lineage of ochrophytes, as proposed recently, but rather phylogenetically nested among them, implying that it lacks a plastid due to loss. In addition, we found the heterotrophic ochrophyte Picophagus flagellatus to lack all hallmark plastid genes yet to exhibit mitochondrial proteins that seem to be genetic footprints of a lost plastid organelle. We thus document, for the first time, plastid loss in two separate ochrophyte lineages. Furthermore, by exploring eDNA data, we enrich the ochrophyte phylogenetic tree by identifying five novel uncultured class-level lineages. Altogether, our study provides a new framework for reconstructing trait evolution in ochrophytes and demonstrates that plastid loss is more common than previously thought.
Collapse
Affiliation(s)
- Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eric D Salomaki
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Kolisko
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - J Craig Bailey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
2
|
Graf L, Dorrell RG. Evolution: Structure and surprises in the diversification of golden algae. Curr Biol 2025; 35:R99-R101. [PMID: 39904317 DOI: 10.1016/j.cub.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A new study reports the most complete phylogeny of the Ochrophyta, providing understanding of how and why they have repeatedly evolved different cellular phenotypes from a single ancestry.
Collapse
Affiliation(s)
- Louis Graf
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, 75005 Paris, France.
| | - Richard G Dorrell
- Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
3
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
4
|
Cho A, Lax G, Keeling PJ. Phylogenomic analyses of ochrophytes (stramenopiles) with an emphasis on neglected lineages. Mol Phylogenet Evol 2024; 198:108120. [PMID: 38852907 DOI: 10.1016/j.ympev.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Ochrophyta is a photosynthetic lineage that crowns the phylogenetic tree of stramenopiles, one of the major eukaryotic supergroups. Due to their ecological impact as a major primary producer, ochrophytes are relatively well-studied compared to the rest of the stramenopiles, yet their evolutionary relationships remain poorly understood. This is in part due to a number of missing lineages in large-scale multigene analyses, and an apparently rapid radiation leading to many short internodes between ochrophyte subgroups in the tree. These short internodes are also found across deep-branching lineages of stramenopiles with limited phylogenetic signal, leaving many relationships controversial overall. We have addressed this issue with other deep-branching stramenopiles recently, and now examine whether contentious relationships within the ochrophytes may be resolved with the help of filling in missing lineages in an updated phylogenomic dataset of ochrophytes, along with exploring various gene filtering criteria to identify the most phylogenetically informative genes. We generated ten new transcriptomes from various culture collections and a single-cell isolation from an environmental sample, added these to an existing phylogenomic dataset, and examined the effects of selecting genes with high phylogenetic signal or low phylogenetic noise. For some previously contentious relationships, we find a variety of analyses and gene filtering criteria consistently unite previously unstable groupings with strong statistical support. For example, we recovered a robust grouping of Eustigmatophyceae with Raphidophyceae-Phaeophyceae-Xanthophyceae while Olisthodiscophyceae formed a sister-lineage to Pinguiophyceae. Selecting genes with high phylogenetic signal or data quality recovered more stable topologies. Overall, we find that adding under-represented groups across different lineages is still crucial in resolving phylogenetic relationships, and discrete gene properties affect lineages of stramenopiles differently. This is something which may be explored to further our understanding of the molecular evolution of stramenopiles.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
5
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
6
|
Barcytė D. Extremophilic red algae reordered. JOURNAL OF PHYCOLOGY 2023; 59:441-443. [PMID: 37313841 DOI: 10.1111/jpy.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| |
Collapse
|
7
|
Oh ZG, Askey B, Gunn LH. Red Rubiscos and opportunities for engineering green plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:520-542. [PMID: 36055563 PMCID: PMC9833100 DOI: 10.1093/jxb/erac349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.
Collapse
Affiliation(s)
- Zhen Guo Oh
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Bryce Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
8
|
Barcytė D, Zátopková M, Němcová Y, Richtář M, Yurchenko T, Jaške K, Fawley KP, Škaloud P, Ševčíková T, Fawley MW, Eliáš M. Redefining Chlorobotryaceae as one of the principal and most diverse lineages of eustigmatophyte algae. Mol Phylogenet Evol 2022; 177:107607. [PMID: 35963589 DOI: 10.1016/j.ympev.2022.107607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Eustigmatophyceae is one of the ∼17 classes of the vast algal phylum Ochrophyta. Over the last decade, the eustigmatophytes emerged as an expansive group that has grown from the initially recognized handful of species to well over 200 genetically distinct entities (potential species). Yet the majority of eustigs, remain represented by unidentified strains, or even only metabarcode sequences obtained from environmental samples. Moreover, the formal classification of the group has not yet been harmonized with the recently uncovered diversity and phylogenetic relationships within the class. Here we make a major step towards resolving this issue by addressing the diversity, phylogeny and classification of one of the most prominent eustigmatophyte clades previously informally called the "Eustigmataceae group". We obtained 18S rDNA and rbcL gene sequences from four new strains from the "Eustigmataceae group", and from several additional eustig strains, and performed the most comprehensive phylogenetic analyses of Eustigmatophyceae to date. Our results of these analyses confirm the monophyly of the "Eustigmataceae group" and define its major subclades. We also sequenced plastid genomes of five "Eustigmataceae group" strains to not only improve our understanding of the plastid gene content evolution in eustigs, but also to obtain a robustly resolved eustigmatophyte phylogeny. With this new genomic data, we have solidified the view of the "Eustigmataceae group" as a well-defined family level clade. Crucially, we also have firmly established the genus Chlorobotrys as a member of the "Eustigmataceae group". This new molecular evidence, together with a critical analysis of the literature going back to the 19th century, provided the basis to radically redefine the historical concept of the family Chlorobotryaceae as the formal taxonomic rubric corresponding to the "Eustigmataceae group". With this change, the family names Eustigmataceae and Characiopsidaceae are reduced to synonymy with the Chlorobotryaceae, with the latter having taxonomic priority. We additionally studied in detail the morphology and ultrastructure of two Chlorobotryaceae members, which we describe as Neustupella aerophytica gen. et sp. nov. and Lietzensia polymorpha gen. et sp. nov. Finally, our analyses of partial genomic data from several Chlorobotryaceae representatives identified genes for hallmark flagellar proteins in all of these strains. The presence of the flagellar proteins strongly suggests that zoosporogenesis is a common trait of the family and also occurs in the members never observed to produce flagellated stages. Altogether, our work paints a rich picture of one of the most diverse principal lineages of eustigmatophyte algae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| | - Martina Zátopková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Yvonne Němcová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00 Prague, Czech Republic
| | - Michal Richtář
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Karen P Fawley
- Division of Science and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 00 Prague, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marvin W Fawley
- Division of Science and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
9
|
Kim JI, Jo BY, Park MG, Yoo YD, Shin W, Archibald JM. Evolutionary Dynamics and Lateral Gene Transfer in Raphidophyceae Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:896138. [PMID: 35769291 PMCID: PMC9235467 DOI: 10.3389/fpls.2022.896138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The Raphidophyceae is an ecologically important eukaryotic lineage of primary producers and predators that inhabit marine and freshwater environments worldwide. These organisms are of great evolutionary interest because their plastids are the product of eukaryote-eukaryote endosymbiosis. To obtain deeper insight into the evolutionary history of raphidophycean plastids, we sequenced and analyzed the plastid genomes of three freshwater and three marine species. Our comparison of these genomes, together with the previously reported plastid genome of Heterosigma akashiwo, revealed unexpected variability in genome structure. Unlike the genomes of other analyzed species, the plastid genome of Gonyostomum semen was found to contain only a single rRNA operon, presumably due to the loss of genes from the inverted repeat (IR) region found in most plastid genomes. In contrast, the marine species Fibrocapsa japonica contains the largest IR region and overall plastid genome for any raphidophyte examined thus far, mainly due to the presence of four large gene-poor regions and foreign DNA. Two plastid genes, tyrC in F. japonica and He. akashiwo and serC in F. japonica, appear to have arisen via lateral gene transfer (LGT) from diatoms, and several raphidophyte open reading frames are demonstrably homologous to sequences in diatom plasmids and plastid genomes. A group II intron in the F. japonica psbB gene also appears to be derived by LGT. Our results provide important insights into the evolutionary history of raphidophyte plastid genomes via LGT from the plastids and plasmid DNAs of diatoms.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Bok Yeon Jo
- Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| | - Yeong Du Yoo
- Department of Marine Biology, College of Ocean Sciences and Technology, Kunsan National University, Kunsan, South Korea
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
10
|
Graf L, Yoon HS. Olisthodiscophyceae, the 17th heterokont algal class. JOURNAL OF PHYCOLOGY 2021; 57:1091-1093. [PMID: 34289104 DOI: 10.1111/jpy.13184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
11
|
Abstract
In recent years, the diversity of eukaryotic microbes has been greatly expanded by recognising or discovering new major branches of the algal tree of life. A new study defines the phylogenetic home for an elusive marine planktonic lineage previously known only by plastidial rRNA genes, placing it in a new class of the phylum Haptophyta.
Collapse
Affiliation(s)
- Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|