1
|
Vigil BE, Ascue F, Ayala RY, Murúa P, Calderon MS, Bustamante DE. Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Sci Rep 2024; 14:18577. [PMID: 39127849 PMCID: PMC11316746 DOI: 10.1038/s41598-024-69538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Macroalgae are vital reservoirs for essential epibiotic microorganisms. Among these are growth-promoting bacteria that support the growth and healthy development of their host macroalgae, and these macroalgae can be utilized in agriculture as biostimulants, offering an alternative to traditional agrochemicals. However, to date, no comparative studies have been conducted on the functional profile and bacterial diversity associated with coastal macroalgae of Peru. In this study, we employed amplicon sequencing of the V3-V4 region of 16S rRNA gene in twelve host macroalgae collected from two rocky shores in central Peru to compare their bacterial communities. The results revealed high bacterial diversity across both sites, but differences in microbial composition were noted. The phyla Bacteroidota and Pseudomonadota were predominant. The functional prediction highlighted 44 significant metabolic pathways associated with the bacterial microbiota when comparing host macroalgae. These active pathways are related to metabolism and genetic and cellular information processing. No direct association was detected between the macroalgal genera and the associated microbiota, suggesting that the bacterial community is largely influenced by their genetic functions than the taxonomic composition of their hosts. Furthermore, some species of Chlorophyta and Rhodophyta were observed to host growth-promoting bacteria, such as Maribacter sp. and Sulfitobacter sp.
Collapse
Affiliation(s)
- Bianca E Vigil
- Programa de Maestría en Mejoramiento Genético de Plantas, Universidad Nacional Agraria La Molina, Lima, Peru
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Francisco Ascue
- Escuela de Posgrado de la Universidad de Ciencia y Tecnología (UTEC), Barranco, Lima, Peru
| | - Rosmery Y Ayala
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología (FICOPAT), Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
2
|
Ismail MM, Ismail GA, Elshobary ME. Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species. BOTANICAL STUDIES 2023; 64:10. [PMID: 37071314 PMCID: PMC10113420 DOI: 10.1186/s40529-023-00373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.
Collapse
Affiliation(s)
- Mona M Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| | - Gehan A Ismail
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Wade RM, Gabrielson PW, Hind KR, Shivak J, Hughey JR, Ohtsu S, Baba M, Kogame K, Lindstrom SC, Miller KA, Schipper SR, Martone PT. Resolving some of the earliest names for Corallina species (Corallinales, Rhodophyta) in the North Pacific by sequencing type specimens and describing the cryptic C. hakodatensis sp. nov. and C. parva sp. nov. JOURNAL OF PHYCOLOGY 2023; 59:221-235. [PMID: 36336979 DOI: 10.1111/jpy.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Partial rbcL sequences from type specimens of three of the earliest described Corallina species showed that C. arbuscula (type locality: Unalaska Island, Alaska, USA) and C. pilulifera (type locality: Okhotsk Sea, Russia) are synonymous, with C. pilulifera as the taxonomically accepted name and that C. vancouveriensis (type locality: Botanical Beach, Vancouver Island, Canada) is a distinct species. To identify molecular species limits and clarify descriptions and distributions of C. pilulifera and C. vancouveriensis, we sequenced and analyzed portions of one mitochondrial and two plastid genes from historical and recent collections. The single-gene phylogenetic reconstructions support the recognition of both species as distinct, as well as two additional species, C. hakodatensis sp. nov. and C. parva sp. nov., which are sister to, and often morphologically indistinguishable from C. pilulifera and C. vancouveriensis, respectively. DNA sequence data currently illustrate that C. pilulifera is found in the cold northern Pacific waters from the Okhotsk Sea of Russia to Hokkaido, Japan, eastward across the Aleutian Islands to Knoll Head, Alaska, and as far south as Nanaimo, British Columbia. Corallina vancouveriensis is distributed as far west as Attu Island in the Aleutian Islands to Sitka, Alaska, and southeasterly at numerous sites from British Columbia to the north of Point Conception, California, USA. The cryptic species C. hakodatensis and C. parva occur sympatrically with their sister species but with narrower ranges. The complex phylogenetic relationships shown by the single gene trees recommend Corallina as a model genus to explore coralline algal biogeography, evolution, and patterns of speciation.
Collapse
Affiliation(s)
- Rachael M Wade
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Paul W Gabrielson
- Biology Department and Herbarium, Coker Hall CB 3280, Chapel Hill, North Carolina, 27599-3280, USA
| | - Katharine R Hind
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Jade Shivak
- Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jeffery R Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, 93901, USA
| | - Sou Ohtsu
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masasuke Baba
- Central Laboratory, Marine Ecology Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba, 299-5105, Japan
| | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sandra C Lindstrom
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Kathy Ann Miller
- University Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, California, 94720-2465, USA
| | - Soren R Schipper
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, 3156-6270 University Blvd, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
4
|
Boo GH, Leliaert F, Le Gall L, Coppejans E, De Clerck O, Van Nguyen T, Payri CE, Miller KA, Yoon HS. Ancient Tethyan Vicariance and Long-Distance Dispersal Drive Global Diversification and Cryptic Speciation in the Red Seaweed Pterocladiella. FRONTIERS IN PLANT SCIENCE 2022; 13:849476. [PMID: 35720545 PMCID: PMC9201827 DOI: 10.3389/fpls.2022.849476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
We investigated the globally distributed red algal genus Pterocladiella, comprising 24 described species, many of which are economically important sources of agar and agarose. We used DNA-based species delimitation approaches, phylogenetic, and historical biogeographical analyses to uncover cryptic diversity and infer the drivers of biogeographic patterns. We delimited 43 species in Pterocladiella, of which 19 are undescribed. Our multigene time-calibrated phylogeny and ancestral area reconstruction indicated that Pterocladiella most likely originated during the Early Cretaceous in the Tethys Sea. Ancient Tethyan vicariance and long-distance dispersal have shaped current distribution patterns. The ancestor of Eastern Pacific species likely arose before the formation of the formidable Eastern Pacific Barrier-a first confirmation using molecular data in red algae. Divergences of Northeast and Southeast Pacific species have been driven by the Central American Seaway barrier, which, paradoxically, served as a dispersal pathway for Atlantic species. Both long- and short-distance dispersal scenarios are supported by genetic relationships within cosmopolitan species based on haplotype analysis. Asymmetrical distributions and the predominance of peripatry and sympatry between sister species suggest the importance of budding speciation in Pterocladiella. Our study highlights the underestimation of global diversity in these crucial components of coastal ecosystems and provides evidence for the complex evolution of current species distributions.
Collapse
Affiliation(s)
- Ga Hun Boo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- University Herbarium, University of California, Berkeley, CA, United States
| | - Frederik Leliaert
- Meise Botanic Garden, Meise, Belgium
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Eric Coppejans
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Tu Van Nguyen
- Department of Ecology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Claude E. Payri
- UMR Entropie (IRD, Ifremer, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS), Nouméa, New Caledonia
| | - Kathy Ann Miller
- University Herbarium, University of California, Berkeley, CA, United States
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
5
|
Exploring the diversity of andean berries from northern Peru based on molecular analyses. Heliyon 2022; 8:e08839. [PMID: 35169641 PMCID: PMC8829587 DOI: 10.1016/j.heliyon.2022.e08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
More than 12,000 species have been listed under the category of berries, and most of them belong to the orders Ericales and Rosales. Recent phylogenetic studies using molecular data have revealed disagreements with morphological approaches mainly due to diverse floral arrangements, which has proven to be a problem when recognizing species. Therefore, the use of multilocus sequence data is essential to establish robust species boundaries. Although berries are common in Andean cloud forests, diversity of these taxa has not been extensively evaluated in the current context of DNA-based techniques. In this regard, this study characterized morphologically and constructed multilocus phylogenies using four molecular markers, two chloroplast markers (matK and rbcL) and two nuclear markers (ITS and GBSSI-2). Specimens did not show diagnostic features to delimit species of berries. A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers. The multilocus phylogenies constructed from these markers allowed the identification of 24 species grouped into the order Ericales (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3) and Rosales (Rubus = 8), incorporating into the Peruvian flora four new records (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale and Rubus glabratus) and revealing the genus Rubus as the most diverse group of berries in the Amazonas region. The results of this study showed congruence in all the multilocus phylogenies, with internal transcribed spacer (ITS) showing the best resolution to distinguish the species. These species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl from Amazonas region. The integration of morphological and DNA-based methods is recommended to understand the diversity of berries along the Peruvian Andean cloud forest. Abstract in Quechua language Qhawarqan astawan chunka iskayniyuq waranqa especiekuna bayasmanta huch’uy mit’a maypichus hatun rak’i chayaqi ordenkunata Ericaleswan Rosaleswan. Chayraqpi Khuski filogeneticamanta rurachiy allincharqan chanikuna molecularkuna willarqan ayñi rikunawanta morfologicokunamanta, qaylla llapan rantichay t’ika tiktutaywan ñawray, ima kay kaqta qhawacgirqan kay huk champay pachaman riqsiypa especiekunamanta. Hina kaqtintaq, chanikuna qatikipaykunamanta multilocus hat’alliy tiksipmi takyachiypaq saywakuna sinchikuna especiekunamanta. Pana bayaskuna kanku allatinkuna sach’a-sach’api phuyusqa anti runap, ñawran manan karqan achka kamaykuy kunan pacha allwiyaraykupi takyasqakuna ADN. Chayrayku, Noqanchispa taqwi allincharqan huk filogenia multilocus, rarachikupúnmi tawa molecular marcadorkuna, caspa iskay markadorkunawan cloroplastomanta (matK, rbcL) iskay markadorkunawan nuclearkunamanta (ITS, GBSSI-2). Kaykunawan filogeniamanta huniqamuran kikinchay iskay chunka tawayoq especies ima tantaqamuran q'anchis generospi (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), kaykunata huñuyqamuranta piruwanu llacha kamay tawa musuq quillqakamachikuta (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale, Rubus glabratus). Nocaykuq lluqsisqan kuwirinti rikuchirurqan llapankuna filogeniaspi multilocusmanta, kaspa espaciador transcrito interno (ITS) pi rikuchina kutuwi mihur rantichay riqsiypaq especiekunata. Abstract in Awajun language Dekanauwai juú weantug 12000 sag nagkaikiut, júna nejég tente ainawai nuintushkam kuashtai Ericales nuigtu Rosales weantui. Molecularesjai takasmaug juki filogeneticos augtus yamá dekai antugnaiñasmauwa nuna Morfologicosjai disa umikmaug, juka waignawai kuashag yagkunum, juwai dekaata tamanum kuashat utugchata ama nunuka. Nunui asamtai multilocus takasmauwa nujai dekanui wajukut ainawa pipish tumaig aidaush. Tujashkam kuashtai tentee nejég ainaug ikam naig yujagkim amuamua nunuig, wajupá kuashtakit tusajig ashi dekapasjig ADNjain dischamui. Nuni tamaugmak, ii augtusag duka takasé filogenia multilocus dekamua nujai, takasji ipák usumat marcadores molecularesjai, jimag marcadores cloroplastosjai (matK nuigtu rbcL) nuigtu jimag marcadores nuclearesjai (ITS nuigtu GBSSI-2). Juu filogenias dekaji 24 sag nagkaikiut tuwaka 7 generosnug tuwaka awa nunu (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), juui dekanai yamajam ipák usumat ajag perunum awanunu (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale nuigtu Rubus glabratus).
Collapse
|