1
|
Conrado AC, Lemes Jorge G, Rao RSP, Xu C, Xu D, Li-Beisson Y, Thelen JJ. Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230353. [PMID: 39343023 PMCID: PMC11449227 DOI: 10.1098/rstb.2023.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits. Novel regulatory subunits, biotin lipoyl attachment domain-containing proteins (BADC) and carboxyltransferase interactors (CTI) (both three-gene families in Arabidopsis) represent new effectors specific to plants and certain algal species. The evolutionary history of these genes in autotrophic eukaryotes remains elusive, making it an ongoing area of research. Analyses of potential protein-protein and co-occurrence interactions, informed by gene network patterns using the STRING database, in Arabidopsis thaliana and Chlamydomonas reinhardtii unveil intricate gene associations with ACCase, suggesting a complex interplay between FA synthesis and other cellular processes. Among both species, a higher number of co-expressed genes was identified in Arabidopsis, indicating a wider potential regulatory network of ACCase in plants. This review investigates the extent to which these genes arose in autotrophic eukaryotes and provides insights into their evolutionary trajectory. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Ana Caroline Conrado
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - R. S. P. Rao
- Center for Bioinformatics, NITTE University Centre, Mangaluru575018, India
| | - Chunhui Xu
- Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille,Aix Marseille Univ, CEA Cadarache, Saint Paul-Lez-Durance13108, France
| | - Jay J. Thelen
- Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211, USA
| |
Collapse
|
2
|
Li T, Ma Z, Ding T, Yang Y, Wang F, Wan X, Liang F, Chen X, Yao H. Codon usage bias and phylogenetic analysis of chloroplast genome in 36 gracilariaceae species. Funct Integr Genomics 2024; 24:45. [PMID: 38429550 DOI: 10.1007/s10142-024-01316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Gracilariaceae is a group of marine large red algae and main source of agar with important economic and ecological value. The codon usage patterns of chloroplast genomes in 36 species from Graciliaceae show that GC range from 0.284 to 0.335, the average GC3 range from 0.135 to 0.243 and the value of ENC range from 35.098 to 42.327, which indicates these genomes are rich in AT and prefer to use codons ending with AT in these species. Nc plot, PR2 plot, neutrality plot analyses and correlation analysis indicate that these biases may be caused by multiple factors, such as natural selection and mutation pressure, but prolonged natural selection is the main driving force influencing codon usage preference. The cluster analysis and phylogenetic analysis show that the differentiation relationship of them is different and indicate that codons with weak or unbiased preferences may also play an irreplaceable role in these species' evolution. In addition, we identified 26 common high-frequency codons and 8-18 optimal codons all ending in A/U in these 36 species. Our results will not only contribute to carrying out transgenic work in Gracilariaceae species to maximize the protein yield in the future, but also lay a theoretical foundation for further exploring systematic classification of them.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Tiemei Ding
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yanxin Yang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fei Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xinjing Wan
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fangyun Liang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xi Chen
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
A H, Sofini SPS, Balasubramanian D, Girigoswami A, Girigoswami K. Biomedical applications of natural and synthetic polymer based nanocomposites. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:269-294. [PMID: 37962432 DOI: 10.1080/09205063.2023.2283910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 11/15/2023]
Abstract
Various nanomaterials have been studied for their biomedical application in recent years. Among them, nanocomposites have a prominent medical application in the prevention, diagnosis, and treatment of various diseases. Nanocomposites are made up of polymeric matrix layers composed of synthetic or natural polymers like chitosan, polyethylene glycol, etc. Polymer nanocomposites are inorganic nanoparticles dispersed in a polymer matrix. There are two types of polymeric nanocomposites which include natural and synthetic polymer nanocomposites. These nanocomposites have various biomedical applications, such as medical implants, wound healing, wound dressing, bone repair and replacement, and dental filling. Polymeric nanocomposites have a wide range of biomedical applications due to their high stability, non-immunogenic nature, sustained drug delivery, non-toxic, and can escape reticuloendothelial system uptake along with drug bioavailability improvement. In this review, we have discussed various types of natural and synthetic polymer nanocomposites and their biomedical applications.
Collapse
Affiliation(s)
- Harini A
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Sharon P S Sofini
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Deepika Balasubramanian
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
4
|
Borg M, Krueger-Hadfield SA, Destombe C, Collén J, Lipinska A, Coelho SM. Red macroalgae in the genomic era. THE NEW PHYTOLOGIST 2023; 240:471-488. [PMID: 37649301 DOI: 10.1111/nph.19211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Rhodophyta (or red algae) are a diverse and species-rich group that forms one of three major lineages in the Archaeplastida, a eukaryotic supergroup whose plastids arose from a single primary endosymbiosis. Red algae are united by several features, such as relatively small intron-poor genomes and a lack of cytoskeletal structures associated with motility like flagella and centrioles, as well as a highly efficient photosynthetic capacity. Multicellular red algae (or macroalgae) are one of the earliest diverging eukaryotic lineages to have evolved complex multicellularity, yet despite their ecological, evolutionary, and commercial importance, they have remained a largely understudied group of organisms. Considering the increasing availability of red algal genome sequences, we present a broad overview of fundamental aspects of red macroalgal biology and posit on how this is expected to accelerate research in many domains of red algal biology in the coming years.
Collapse
Affiliation(s)
- Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, VA, 23480, USA
| | - Christophe Destombe
- International Research Laboratory 3614 (IRL3614) - Evolutionary Biology and Ecology of Algae, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, 29680, France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff, Sorbonne Université, Roscoff, 29680, France
| | - Agnieszka Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Identification, Characteristics and Function of Phosphoglucomutase (PGM) in the Agar Biosynthesis and Carbon Flux in the Agarophyte Gracilariopsis lemaneiformis (Rhodophyta). Mar Drugs 2022; 20:md20070442. [PMID: 35877735 PMCID: PMC9319447 DOI: 10.3390/md20070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Agar is widely applied across the food, pharmaceutical and biotechnology industries, owing to its various bioactive functions. To better understand the agar biosynthesis in commercial seaweed Gracilariopsis lemaneiformis, the activities of four enzymes participating in the agar biosynthesis were detected, and phosphoglucomutase (PGM) was confirmed as highly correlated with agar accumulation. Three genes of PGM (GlPGM1, GlPGM2 and GlPGM3) were identified from the G. lemaneiformis genome. The subcellular localization analysis validated that GlPGM1 was located in the chloroplast and GlPGM3 was not significantly distributed in the organelles. Both the GlPGM1 and GlPGM3 protein levels showed a remarkable consistency with the agar variations, and GlPGM3 may participate in the carbon flux between (iso)floridoside, floridean starch and agar synthesis. After treatment with the PGM inhibitor, the agar and floridean starch contents and the activities of floridean starch synthase were significantly decreased; products identified in the Calvin cycle, the pentose phosphate pathway, the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cycle were depressed; however, lipids, phenolic acids and the intermediate metabolites, fructose-1,6-phosphate were upregulated. These findings reveal the essential role of PGM in regulating the carbon flux between agar and other carbohydrates in G. lemaneiformis, providing a guide for the artificial regulation of agar accumulation.
Collapse
|