1
|
Hu M, Zhang Y, Ding H, Chao R, Cao Z. Effect and mechanism of miRNA-144-5p-regulated autophagy in older adults with Sarcopenia. Immun Ageing 2025; 22:7. [PMID: 39953589 PMCID: PMC11827453 DOI: 10.1186/s12979-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Advanced aging invariably triggers an overabundance of apoptosis, stemming from diminished autophagy or a disarray in cellular autophagic processes. This, in turn, leads to an accelerated breakdown of muscle proteins, which exacerbates the ongoing deterioration of skeletal muscle and intensifies the severity of senile sarcopenia. This study aimed to investigate the role and mechanism of miRNA-regulated autophagy in senile sarcopenia. METHODS The miRNAs associated with sarcopenia were screened, and the target genes of significant miRNAs were predicted. The effects of significantly differentially expressed miRNA-144-5p on cell aging and autophagy were validated in vivo and in vitro. RESULTS The inhibition of miR-144-5p enhanced the multiplication of mouse myoblasts, increased the expression of MHC and autophagic markers LC3II/LC3I and Beclin-1, facilitated the formation of autophagosomes in mouse myoblasts, and reduced the number of aging cells and the expression of senescence-related proteins acetylated p53, p53, and p21 expression in mouse myoblasts. miR-144-5p affects myoblast senescence, myogenic differentiation, and autophagy by regulating the downstream target gene, Atg2A. Inhibiting miR-144-5p markedly increased the grip strength of the posterior limb in old mice, and the CSA of old mice and young mice was also markedly increased. CONCLUSION All experiments have demonstrated that miRNA-144-5p has a significant impact on the regulation of autophagy and the development of senile sarcopenia.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Ying Zhang
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Hong Ding
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Rui Chao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China
| | - Zhidong Cao
- Department of Orthopedics, Central Hospital of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Taheri M, Khoshbakht T, Hussen BM, Abdullah ST, Ghafouri-Fard S, Sayad A. Emerging Role of miRNAs in the Pathogenesis of Periodontitis. Curr Stem Cell Res Ther 2024; 19:427-448. [PMID: 35718954 DOI: 10.2174/1574888x17666220617103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) have been found to participate in the pathogenesis of several immune-related conditions through the modulation of the expression of cytokine coding genes and other molecules that affect the activity of the immune system. Periodontitis is an example of these conditions associated with the dysregulation of several miRNAs. Several miRNAs such as let-7 family, miR-125, miR-378, miR-543, miR-302, miR-214, miR-200, miR-146, miR-142, miR-30 and miR-21 have been shown to be dysregulated in patients with periodontitis. miR-146 is the most assessed miRNA in these patients, which is up-regulated in most studies in patients with periodontitis. In the present review, we describe the impact of miRNAs dysregulation on the pathoetiology of periodontitis.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li Q, Hu Z, Yang F, Peng Y. Circ_0066881 targets miR-144-5p/RORA axis to alleviate LPS-induced apoptotic and inflammatory damages in human periodontal ligament cells. Innate Immun 2022; 28:164-173. [PMID: 35635221 PMCID: PMC9189553 DOI: 10.1177/17534259221079812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are involved in the regulation of various diseases, including periodontitis. The objective of this study was to analyze the biological role and regulatory mechanism of circ_0066881 in LPS-induced periodontal ligament cells (PDLCs). Circ_0066881, microRNA-144-5p (miR-144-5p) and retinoid acid-related orphan receptor A (RORA) levels were determined using reverse transcription-quantitative PCR (RT-qPCR) assay. Cell viability detection was performed by Cell Counting Kit-8 assay. Cell apoptosis was assessed through flow cytometry and caspase-3 activity assay. The protein analysis was completed via Western blot. Inflammatory cytokines were measured by ELISA. The target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The level of circ_0066881 was down-regulated in periodontitis tissues. Overexpression of circ_0066881 relieved LPS-induced cell viability inhibition and apoptosis or inflammation promotion in PDLCs. Circ_0066881 could bind to miR-144-5p. The protective function of circ_0066881 was achieved by sponging miR-144-5p in PDLCs. Circ_0066881 acts as a miR-144-5p sponge to mediate the RORA level. Inhibition of miR-144-5p attenuated LPS-induced cell injury via targeting RORA. All these results demonstrated that circ_0066881 partly prevented LPS-evoked cell dysfunction in PDLCs through miR-144-5p-mediated up-regulation of RORA.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Zhaopeng Hu
- Department of Pathology, Pingxiang People’s Hospital, Pingxiang, Jiangxi,China
| | - Fang Yang
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Yi Peng
- Department of Stomatology, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| |
Collapse
|
4
|
Micó-Martínez P, Almiñana-Pastor PJ, Alpiste-Illueca F, López-Roldán A. MicroRNAs and periodontal disease: a qualitative systematic review of human studies. J Periodontal Implant Sci 2021; 51:386-397. [PMID: 34965618 PMCID: PMC8718333 DOI: 10.5051/jpis.2007540377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose MicroRNAs (miRNAs) are epigenetic post-transcriptional regulators that modulate gene expression and have been identified as biomarkers for several diseases, including cancer. This study aimed to systematically review the relationship between miRNAs and periodontal disease in humans, and to evaluate the potential of miRNAs as diagnostic and prognostic biomarkers of disease. Methods The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (reference number CRD42020180683). The MEDLINE, Scopus, Cochrane Library, Embase, Web of Science, and SciELO databases were searched for clinical studies conducted in humans investigating periodontal diseases and miRNAs. Expression levels of miRNAs across the different groups were analysed using the collected data. Results A total of 1,299 references were identified in the initial literature search, and 23 articles were finally included in the review. The study designs were heterogeneous, which prevented a meta-analysis of the data. Most of the studies compared miRNA expression levels between patients with periodontitis and healthy controls. The most widely researched miRNA in periodontal diseases was miR-146a. Most studies reported higher expression levels of miR-146a in patients with periodontitis than in healthy controls. In addition, many studies also focused on identifying target genes of the differentially expressed miRNAs that were significantly related to periodontal inflammation. Conclusions The results of the studies that we analysed are promising, but diagnostic tests are needed to confirm the use of miRNAs as biomarkers to monitor and aid in the early diagnosis of periodontitis in clinical practice.
Collapse
Affiliation(s)
- Pablo Micó-Martínez
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - Pedro J Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Francisco Alpiste-Illueca
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
7
|
Expression of MicroRNAs in Periodontal Disease: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2069410. [PMID: 33542918 PMCID: PMC7840252 DOI: 10.1155/2021/2069410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
Introduction Periodontal disease (PD) is a chronic inflammation of the soft tissues that support the structure of the tooth, and miRNAs are highly dynamic molecules that participate in the regulation of gene expression interfering with multiple genetic targets. The dysregulation of the expression of miRNAs has been associated with different types of pathologies; therefore, they are excellent molecules to be studied as biomarkers. Material and Methods. A search was made in the electronic databases of PubMed, Scopus, and Science Direct. The following key words were used: “microRNAs,” “miRNAs,” “periodontal disease,” “periodontitis,” and “biomarker”; employee independent search strategies with the Boolean operators “OR” and “AND”; a further search of the references of the selected studies was performed to detect potential studies that met the selection criteria. The data recollected from each article were author, country, year of publication, sample size, type of sample used to identify miRNAs, methodology used to identify miRNAs, type of periodontal disease, and miRNAs identified. Results Of the 13 selected studies, 6 used gingival tissue as a sample for the identification of miRNAs, 3 used gingival fluid, 2 used saliva, 1 used serum, and another used periodontal tissue. Chronic periodontitis was the most studied periodontal disease in 9 of the 13 selected articles; 7 used microarrays as the main technique for the identification of miRNAs. qRT-PCR was the assay choice to validate the identified miRNAs. Conclusion The main type of periodontal disease on which most studies are focused is chronic periodontitis, with the main miRNAs being hsa-miR-146a, hsa-miR-146b, hsa-miR-155, and hsa-miR-200. This systematic review is one of the first to carry out an analysis of the current role of miRNAs in PD as biomarkers.
Collapse
|
8
|
Yuan Y, Zhang H, Huang H. microRNAs in inflammatory alveolar bone defect: A review. J Periodontal Res 2020; 56:219-225. [PMID: 33296525 DOI: 10.1111/jre.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
Inflammatory alveolar bone defects are caused by periodontal pathogens, are one of the most common oral diseases in the clinic, and are characterized by periodontal support tissue damage. MicroRNAs (miRNAs) can participate in a variety of inflammatory lesions and modulate bone metabolism through the posttranscriptional regulation of target genes. In recent years, studies have confirmed that some miRNAs play significant roles in the development of inflammatory alveolar bone defects. Therefore, we reviewed the correlation between miRNAs and inflammatory alveolar bone defects and elucidated the underlying mechanisms to provide new ideas for the prevention and treatment of inflammatory alveolar bone defects.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongming Zhang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui Huang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Stomatology, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
9
|
Nik Mohamed Kamal NNS, Awang RAR, Mohamad S, Shahidan WNS. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front Physiol 2020; 11:587381. [PMID: 33329037 PMCID: PMC7733931 DOI: 10.3389/fphys.2020.587381] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic periodontitis (CP) is an oral cavity disease arising from chronic inflammation of the periodontal tissues. Exosomes are lipid vesicles that are enriched in specific microRNAs (miRNAs), potentially providing a disease-specific diagnostic signature. To assess the value of exosomal miRNAs as biomarkers for CP, 8 plasma- and 8 salivary-exosomal miRNAs samples were profiled using Agilent platform (comparative study). From 2,549 probed miRNAs, 33 miRNAs were significantly down-regulated in CP as compared to healthy plasma samples. Whereas, 1,995 miRNAs (1,985 down-regulated and 10 up-regulated) were differentially expressed in the CP as compared to healthy saliva samples. hsa-miR-let-7d [FC = -26.76; AUC = 1; r = -0.728 [p-value = 0.04]), hsa-miR-126-3p (FC = -24.02; AUC = 1; r = -0.723 [p-value = 0.043]) and hsa-miR-199a-3p (FC = -22.94; AUC = 1; r = -0.731 [p-value = 0.039]) are worth to be furthered studied for plasma-exosomal samples. Meanwhile, for salivary-exosomal samples, hsa-miR-125a-3p (FC = 2.03; AUC = 1; r = 0.91 [p-value = 0.02]) is worth to be furthered studied. These miRNAs are the reliable candidates for the development of periodontitis biomarker, as they were significantly expressed differently between CP and healthy samples, have a good discriminatory value and strongly correlate with the mean of PPD. These findings highlight the potential of exosomal miRNAs profiling in the diagnosis from both sourced as well as provide new insights into the molecular mechanisms involved in CP.
Collapse
Affiliation(s)
| | - Raja Azman Raja Awang
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | | |
Collapse
|
10
|
Dai YL, Hsu RJ, Huang HK, Huang TW, Tsai WC, Chang H, Lan CC, Huang KL. Adaptive support ventilation attenuates postpneumonectomy acute lung injury in a porcine model. Interact Cardiovasc Thorac Surg 2020; 31:718-726. [PMID: 33051664 DOI: 10.1093/icvts/ivaa157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES An optimal ventilation strategy that causes as little mechanical stress and inflammation as possible is critical for patients undergoing pneumonectomy. The aim of this study was to determine whether adaptive support ventilation (ASV) can provide protective ventilation to the remaining lung after pneumonectomy with minimal mechanical stress and less inflammation than volume-control ventilation (VCV). METHODS In this study, 15 pigs were randomly allocated to 3 groups (n = 5 for each group): the control group, the VCV group and the ASV group. After left pneumonectomy, the VCV group was treated with the volume-control set to 20 ml/kg, and the ASV group with the mode set to achieve 60% of the minute ventilation of 2 lungs. RESULTS The ASV group had lower alveolar strain than the VCV group. The ASV group exhibited less lung injury and greater alveolar fluid clearance than the VCV group (13.3% vs -17.8%; P ≤ 0.018). Ventilator-induced lung injury was associated with changes in the cytokine levels in the exhaled breath condensate, differential changes in plasma and changes in the cytokines in the bronchoalveolar lavage fluid. Expression of 3 microRNAs (miR449b-3p, P ≤ 0.001; miR451-5p, P = 0.027; and miR144-5p, P = 0.008) was increased in the VCV group compared with the ASV group. CONCLUSIONS The ASV mode was capable of supporting rapid, shallow breathing patterns to exert lung-protective effects in a porcine postpneumonectomy model. Further investigation of microRNAs as biomarkers of ventilator-induced lung injury is warranted.
Collapse
Affiliation(s)
- Yu-Ling Dai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jun Hsu
- Cancer Research Center, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsu-Kai Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Wang Huang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital Taipei, National Defense Medical Center, Taipei, Taiwan
| | - Hung Chang
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: Suppression of TLR2 and OLR1. J Mol Cell Cardiol 2020; 143:1-14. [PMID: 32278833 DOI: 10.1016/j.yjmcc.2020.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND It has been noted that dysregulation of microRNAs (miRNAs) contributes to the formation of abdominal aortic aneurysm (AAA), a vascular disease associated with progressive aortic dilatation and degradation, and pathological infiltration and activation of inflammatory cells, such as macrophages. Our microarray data revealing that miR-144-5p was the top 1 downregulated miRNA in mouse AAA tissues as compared to normal aortas motivated us to explore its role in AAA development. METHODS We profiled miRNA and mRNA expression in Angiotensin II (Ang II)- (n = 3) and saline-infused abdominal aortas (n = 4) via Agilent microarrays, and further validated the data with real-time QPCR. In vivo, miR-144-5p or control agomirs were given to Apoe-/- mice with Ang II infusion-induced AAA. In vitro, mouse RAW 264.7 macrophages and human THP-1 macrophage-like cells were transfected with miR-144-5p or control agomirs/antagomirs, and oxidized Low Density Lipoprotein (ox-LDL) was used to stimulate M1 macrophage polarization. RESULTS Based on the microarray and real-time QPCR validation data, we identified miR-144-5p as a novel downregulated miRNA in AAA tissues. Overexpression of miR-144-5p by utilizing its specific agomirs in vivo significantly attenuated Ang II-induced aortic dilatation and elastic degradation in Apoe-/- mice and improved their survival. AAA incidence was reduced by miR-144-5p as well. MiR-144-5p polarized macrophages to M2 type in Ang II-infused aortas. Further, the expression levels of two predictive targets for miR-144-5p, Toll Like Receptor 2 (TLR2) and ox-LDL Receptor 1 (OLR1), were higher in AAA specimens, and negatively correlated to miR-144-5p (Pearson correlation coefficient r < -0.9, P < .01). These two molecules were then confirmed as novel miR-144-5p targets via dual-luciferase assay. MiR-144-5p agomirs suppressed ox-LDL-induced upregulation of M1 macrophage markers, including interleukin 1β (IL1β), tumor necrosis factor α (TNFα), prostaglandin-endoperoxide synthase 2 (PTGS2) and nitric oxide synthase 2 (NOS2), in macrophages probably by targeting TLR2. MiR-144-5p also inhibited the signaling transduction of pathways downstream to TLR2 and OLR1, including NF-κB and ERK1/2 pathways, whose abnormal activation contributed AAA formation. CONCLUSION Our work suggests miR-144-5p as a novel regulator for AAA pathology. Management of miR-144-5p and its targets TLR2 and OLR1 provides therapeutic potential for limiting AAA formation.
Collapse
|
12
|
Fu W, Liu Z, Zhang J, Shi Y, Zhao R, Zhao H. Effect of miR-144-5p on the proliferation, migration, invasion and apoptosis of human umbilical vein endothelial cells by targeting RICTOR and its related mechanisms. Exp Ther Med 2020; 19:1817-1823. [PMID: 32104237 PMCID: PMC7027162 DOI: 10.3892/etm.2019.8369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of the present study was to investigate the effect of microRNA (miR)-144-5p on human umbilical vein endothelial cells (HUVECs) to explore the role of miR-144-5p in atherosclerosis. miR-144-5p expression was upregulated in HUVECs using miR-144-5p mimics. The relative expression level of miR-144-5p in HUVECs was detected using reverse transcription-quantitative PCR (RT-qPCR). Cell proliferation was detected by performing an MTT assay. Apoptosis was determined via flow cytometry. Cell migration ability was detected by a wound-healing assay. Cell invasion was determined by a transwell assay. The protein levels of phosphorylated (p)-PI3K, p-Akt and endothelial nitric oxide synthase (eNOS) were detected using western blot analysis. The binding sites between miR-144-5p and 3'-untranslated region of rapamycin-insensitive companion of mTOR (RICTOR) mRNA were predicted by TargetScan and confirmed by a dual luciferase reporter assay. The present study showed that miR-144-5p mimics significantly inhibited cell proliferation and induced apoptosis in HUVECs. In addition, miR-144-5p mimics could suppress migration and invasion of HUVECs. Further analysis identified that RICTOR was a direct target gene of miR-144-5p. Moreover, miR-144-5p upregulation decreased the protein level of p-PI3K, p-Akt and eNOS. In conclusion, miR-144-5p regulated HUVEC proliferation, migration, invasion, and apoptosis through affecting the PI3K-Akt-eNOS signaling pathway by altering the expression of RICTOR. These results indicated that miR-144-5p may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zidong Liu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuxue Shi
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ruiyao Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Heng Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
13
|
Zhou G, Li Y, Ni J, Jiang P, Bao Z. Role and mechanism of miR-144-5p in LPS-induced macrophages. Exp Ther Med 2019; 19:241-247. [PMID: 31853295 PMCID: PMC6909656 DOI: 10.3892/etm.2019.8218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to explore the possible role of microRNA-144-5p (miR-144-5p) in rheumatoid arthritis (RA) and the associated mechanism. Following the induction of THP-1 cell differentiation into macrophages by phorbol ester (100 ng/ml) treatment, an in vitro inflammatory model of RA was established by treating the THP-1 macrophages with 1 µg/ml lipopolysaccharide (LPS). The level of miR-144-5p was subsequently measured using reverse transcription-quantitative PCR, which found that the expression of miR-144-5p was significantly reduced in LPS-treated THP-1 macrophages. Bioinformatics analysis and a dual-luciferase reporter assay were used to predict and confirm TLR2 as a direct target of miR-144-5p, respectively. Toll-like receptor 2 (TLR2) was then validated as a target gene of miR-144-5p. The effects of miR-144-5p upregulation and TLR2 silencing on LPS-treated THP-1 macrophages were then determined by transfection with miR-144-5p mimic and TLR2-siRNA, respectively. Cell viability was subsequently measured using a Cell Counting Kit-8 assay, whilst the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-8 secreted by THP-1 macrophages was measured using ELISA. Western blotting was performed to measure p65 phosphorylation (p-p65) in the NK-κB signaling pathway. It was found that miR-144-5p overexpression reduced macrophage cell viability, reduced the expression of TNF-α, IL-6 and IL-8, and reduced the expression of TLR2 and p-p65 compared with the control group. Likewise, TLR2 silencing also reduced macrophage cell viability and reduced the expression of TNF-α, IL-6 and IL-8 in THP-1 macrophages. In conclusion, the data from the present study suggested that miR-144-5p overexpression reduced THP-1 macrophage cell viability and inhibited the expression of TNF-α, IL-6 and IL-8 in cells, possibly by inhibiting the expression of TLR2 and suppressing the activation of NK-κB signaling. Therefore, miR-144-5p may serve as a novel therapeutic target for the treatment of RA.
Collapse
Affiliation(s)
- Guozhu Zhou
- Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Orthopedics, Jingjiang Chinese Medicine Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yuwei Li
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, P.R. China
| | - Jianping Ni
- Department of Orthopedics, Jingjiang Chinese Medicine Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Ping Jiang
- Department of Orthopedics, Jingjiang Chinese Medicine Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Zili Bao
- Department of Orthopedics, Jingjiang Chinese Medicine Hospital, Taizhou, Jiangsu 214500, P.R. China
| |
Collapse
|
14
|
Gao C, Gong Z, Wang D, Huang J, Qian Y, Nie M, Jiang W, Liu X, Luo H, Yuan J, Xiang T, An S, Quan W, Wei H, Zhang J, Jiang R. Hematoma-derived exosomes of chronic subdural hematoma promote abnormal angiogenesis and inhibit hematoma absorption through miR-144-5p. Aging (Albany NY) 2019; 11:12147-12164. [PMID: 31841443 PMCID: PMC6949077 DOI: 10.18632/aging.102550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Exosomes are small (30-150 nm diameter) lipid bilayer-enclosed vesicles found in all bodily fluids. We investigated whether exosomes play a role in chronic subdural hematoma (CSDH). Exosomes were identified and characterized using transmission electron microscopy and NanoSight particle tracking. The functions of hematoma-derived exosomes were evaluated in a rat model of acute subdural hematoma (SDH). The hematoma-derived exosomes inhibited hematoma absorption and exacerbated neurological deficits in SDH rats. We examined the effects of the exosomes on angiogenesis and cell permeability in human umbilical vein endothelial cells (HUVECs). Co-culture of exosomes with HUVECs revealed that the hematoma-derived exosomes were taken-in by the HUVECs, resulting in enhanced tube formation and vascular permeability. Additionally, there was a concomitant increase in ANG-2 expression and decrease in ANG-1 expression. Exosomes were enriched with microRNAs including miR-144-5p, which they could deliver to HUVECs to promote angiogenesis and increase membrane permeability. Overexpression of miR-144-5p in HUVECs and in SDH rats promoted abnormal angiogenesis and reduced hematoma absorption, which mimicked the effects of the hematoma-derived exosomes both in vitro and in vivo. Thus, hematoma-derived exosomes promote abnormal angiogenesis with high permeability and inhibit hematoma absorption through miR-144-5p in CSDH.
Collapse
Affiliation(s)
- Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Zhitao Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Hongliang Luo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Shuo An
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
15
|
Fu W, Liu Z, Zhang J, Shi Y, Zhao R, Zhao H. Effect of microRNA-144-5p on the proliferation, invasion and migration of human umbilical vein endothelial cells by targeting SMAD1. Exp Ther Med 2019; 19:165-171. [PMID: 31853287 PMCID: PMC6909792 DOI: 10.3892/etm.2019.8194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that is a major cause of death and injury worldwide. Apoptosis of endothelial cells (ECs) serves an important role in the occurrence and development of atherosclerosis. MicroRNAs (miRNAs) serve a key role in atherosclerosis though regulating the function of ECs. At present, the role of miRNA-144-5p (miR-144-5p) in atherosclerosis is unclear. The aim of this study was to investigate the effect of miR-144-5p on atherosclerosis in oxidized low-density lipoprotein (ox-LDL)-stimulated human umbilical vein endothelial cells (HUVECs). Results from the present study demonstrated that miR-144-5p overexpression could inhibit proliferation and induce apoptosis in HUVECs. To further study the biological function of miR-144-5p, the effects of modulating miR-144-5p expression on the invasion and migration of HUVECs were also examined. The results demonstrated that miR-144-5p upregulation suppressed HUVEC migration and invasion. TargetScan and dual luciferase reporter assay results demonstrated that SMAD1 was a direct target gene of miR-144-5p. miR-144-5p upregulation inhibited the expression of phosphorylated-SMAD1/5/8 in the SMAD pathway. In conclusion, the data indicated that miR-144-5p serves an important role in the development of atherosclerosis through regulating the function of HUVECs by targeting SMAD1.
Collapse
Affiliation(s)
- Wei Fu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zidong Liu
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuxue Shi
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ruiyao Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Heng Zhao
- Department of Cardiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
16
|
Almiñana-Pastor PJ, Boronat-Catalá M, Micó-Martinez P, Bellot-Arcís C, Lopez-Roldan A, Alpiste-Illueca FM. Epigenetics and periodontics: A systematic review. Med Oral Patol Oral Cir Bucal 2019; 24:e659-e672. [PMID: 31433392 PMCID: PMC6764711 DOI: 10.4317/medoral.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Despite decades of research, our knowledge of several important aspects of periodontal pathogenesis remains incomplete. Epigenetics allows to perform dynamic analysis of different variations in gene expression, providing this great advantage to the static measurement provided by genetic markers. The aim of this systematic review is to analyze the possible relationships between different epigenetic mechanisms and periodontal diseases, and to assess their potential use as biomarkers of periodontitis. Material and Methods A systematic search was conducted in six databases using MeSH and non-MeSH terms. The review fulfilled PRISMA criteria (Preferred Reporting Items for Systematic reviews and Meta-analysis). Results 36 studies met the inclusion criteria. Due to the heterogeneity of the articles, it was not possible to conduct quantitative analysis. Regarding qualitative synthesis, however, it was found that epigenetic mechanisms may be used as biological markers of periodontal disease, as their dynamism and molecular stability makes them a valuable diagnostic tool. Conclusions Epigenetic markers alter gene expression, producing either silencing or over-expression of molecular transcription that respond to the demands of the cellular surroundings. Gingival crevicular fluid collection is a non-invasive and simple procedure, which makes it an ideal diagnostic medium for detection of both oral and systemic issues. Although further research is needed, this seems to be a promising field of research in the years to come. Key words:Epigenetics, periodontitis, DNA methylation, miRNA, epigenetic biomarker, periodontal diseases.
Collapse
|
17
|
Saul MJ, Emmerich AC, Steinhilber D, Suess B. Regulation of Eicosanoid Pathways by MicroRNAs. Front Pharmacol 2019; 10:824. [PMID: 31379585 PMCID: PMC6659501 DOI: 10.3389/fphar.2019.00824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023] Open
Abstract
Over the last years, many microRNAs (miRNAs) have been identified that regulate the formation of bioactive lipid mediators such as prostanoids and leukotrienes. Many of these miRNAs are involved in complex regulatory circuits necessary for the fine-tuning of biological functions including inflammatory processes or cell growth. A better understanding of these networks will contribute to the development of novel therapeutic strategies for the treatment of inflammatory diseases and cancer. In this review, we provide an overview of the current knowledge of miRNA regulation in eicosanoid pathways with special focus on novel miRNA functions and regulatory circuits of leukotriene and prostaglandin biosynthesis.
Collapse
Affiliation(s)
- Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne C Emmerich
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|