1
|
Involvement of the Notch signaling system in alveolar bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:38-47. [PMID: 36880060 PMCID: PMC9985033 DOI: 10.1016/j.jdsr.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
The Notch pathway is an evolutionarily preserved signaling pathway involved in a variety of vital cell functions. Additionally, it is one of the key regulators of inflammation, and controls the differentiation and function of different cells. Moreover, it was found to be involved in skeletal development and bone remodeling process. This review provides an overview of the involvement of the Notch signaling pathway in the pathogenesis of alveolar bone resorption in different forms of pathological conditions such as apical periodontitis, periodontal disease, and peri-implantitis. In vitro and in vivo evidence have confirmed the involvement of Notch signaling in alveolar bone homeostasis. Nonetheless, Notch signaling system, along with complex network of different biomolecules are involved in pathological process of bone resorption in apical periodontitis, periodontitis, and peri-implantitis. In this regard, there is a substantial interest to control the activity of this pathway in the treatment of disorders associated with its dysregulation. This review provides knowledge on Notch signaling and outlines its functions in alveolar bone homeostasis and alveolar bone resorption. Further investigations are needed to determine whether inhibition of the Notch signaling pathways might be beneficial and safe as a novel approach in the treatment of these pathological conditions.
Collapse
|
2
|
Jezdic M, Nikolic N, Krasavcevic AD, Milasin J, Aleksic Z, Carkic J, Jankovic S, Milinkovic I. Clinical, microbiological and osteoimmunological findings in different peri-implant conditions - A cross-sectional study. Clin Oral Implants Res 2023; 34:958-966. [PMID: 37392017 DOI: 10.1111/clr.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES The aim of this study was to assess the prevalence of certain microbiota and their potential correlation with clinical parameters, expression of proinflammatory cytokines, Notch signalling pathway molecules and bone remodelling mediators among different peri-implant conditions. MATERIALS AND METHODS Included participants had at least one dental implant minimally 1 year in function. They were divided into peri-implantitis (PI), peri-implant mucositis (PM) and healthy implants (HIs) groups. Prevalence of P. ginigvalis, Fusobacterium spp., EBV and C. albicans was detected in participants' crevicular fluid (CF) using quantitative real-time polymerase chain reaction, different markers' expression, as well as clinical data, were correlated with the microbial presence. RESULTS CF samples taken from one chosen implant from each of the 102 participants were analyzed. Significantly higher levels of P. gingivalis were found in PI compared with HI (p = .012) and PM (p = .026). Fusobacterium spp. was also more prevalent in PI (p = .041) and PM (0.008) than in HI. P. gingivalis was a predictor of PPDi (p = .011, R2 = 0.063) and CALi (p = .049, R2 = 0.038). A positive correlation was found in PI for the level of Fusobacterium spp. and TNFα expression (ρ = 0.419, p = .017) while in PM, P. gingivalis and Notch 2 expression were correlated (ρ = 0.316, p = .047). CONCLUSIONS P. gingivalis appears to be involved in the osteolysis in patients with PI, while the positive correlation of its level with Notch 2 expression in patients with PM suggests a potential involvement of P. gingivalis in the progression of PM into PI.
Collapse
Affiliation(s)
- Marija Jezdic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Djinic Krasavcevic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Aleksic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasha Jankovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Milinkovic
- Implant Center, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Djinic Krasavcevic A, Nikolic N, Milinkovic I, Carkic J, Jezdic M, Jankovic S, Aleksic Z, Milasin J. Notch signalling cascade and proinflammatory mediators in peri-implant lesions with different RANKL/OPG ratios-An observational study. J Periodontal Res 2023; 58:360-368. [PMID: 36617525 DOI: 10.1111/jre.13096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & OBJECTIVE Notch signaling pathway has been linked to bone loss in periodontitis and peri-implantitis. This research aimed to determine the Notch signaling molecules expression levels (Notch1, Notch2, Jagged1, Hes1, and Hey1), along with bone remodeling mediators (RANKL and OPG) and proinflammatory cytokines (TNF-α, IL-17, IL-1β, and IL-6) in patients with peri-implant diseases. The aforementioned markers' expression was evaluated in patients with different RANKL/OPG ratios. METHODS Fifty patients with peri-implantitis (PI group) and 45 patients with peri-implant mucositis (PM group) were enrolled. Relative gene expression levels of investigated molecules were determined by reverse transcriptase-real-time polymerase chain reaction. On the basis of RANKL/OPG ratio, all peri-implant lesions were divided into subgroups: RANKL-predominant (RANKL > OPG) and OPG-predominant (RANKL < OPG). Clinical periodontal parameters (probing depth-PD, bleeding on probing-BOP, clinical attachment level-CAL and plaque index-PLI), were recorded for each patient around every tooth, and around placed implants (PDi, BOPi, CALi, PLIi). RESULTS RANKL-predominant PM patients exhibited higher expression levels of Notch2 (p = .044) and Hey1 (p = .005) compared to OPG-predominant lesions. In all RANKL-predominant cases, Hey1 (p = .001), IL-1β (p = .005), IL-6 (p = .002) were overexpressed in PI comparing to PM, accompanied with significantly higher PDi, CALi and PLIi in PI than PM (p = .001, p = .001 and p = .009). CONCLUSIONS Notch2 upregulation in RANKL-predominant PM lesions could be an important contributor to alveolar bone resorption and represent a predictor of PM to PI transition. Similarly, the overexpression of IL-1β and IL-6 might provide an osteoclastogenic environment in PI RANKL-predominant lesions.
Collapse
Affiliation(s)
- Ana Djinic Krasavcevic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Milinkovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Jezdic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasha Jankovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Aleksic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Luo X, Wan Q, Cheng L, Xu R. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol 2022; 12:908859. [PMID: 35937695 PMCID: PMC9353524 DOI: 10.3389/fcimb.2022.908859] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic periapical periodontitis (CAP) is a typical oral disease in which periodontal inflammation caused by an odontogenic infection eventually leads to bone loss. Uncontrolled infections often lead to extensive bone loss around the root tip, which ultimately leads to tooth loss. The main clinical issue in the treatment of periapical periodontitis is the repair of jawbone defects, and infection control is the first priority. However, the oral cavity is an open environment, and the distribution of microorganisms through the mouth in jawbone defects is inevitable. The subversion of host cell metabolism by oral microorganisms initiates disease. The presence of microorganisms stimulates a series of immune responses, which in turn stimulates bone healing. Given the above background, we intended to examine the paradoxes and connections between microorganisms and jaw defect repair in anticipation of new ideas for jaw defect repair. To this end, we reviewed the microbial factors, human signaling pathways, immune cells, and cytokines involved in the development of CAP, as well as concentrated growth factor (CGF) and stem cells in bone defect repair, with the aim of understanding the impact of microbial factors on host cell metabolism to inform the etiology and clinical management of CAP.
Collapse
Affiliation(s)
| | | | - Lei Cheng
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| | - Ruoshi Xu
- *Correspondence: Lei Cheng, ; Ruoshi Xu,
| |
Collapse
|
5
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Milinkovic I, Djinic Krasavcevic A, Nikolic N, Aleksic Z, Carkic J, Jezdic M, Jankovic S, Milasin J. Notch down-regulation and inflammatory cytokines and RANKL overexpression involvement in peri-implant mucositis and peri-implantitis: A cross-sectional study. Clin Oral Implants Res 2021; 32:1496-1505. [PMID: 34546593 DOI: 10.1111/clr.13850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Notch signaling pathway, known to influence bone resorption in several oral diseases, has not been analyzed in peri-implantitis yet. Therefore, the aims of the present study were to determine the levels of Notch cascade, bone remodeling mediators, and pro-inflammatory cytokines, in conjunction with clinical parameters, in subjects with peri-implant mucositis and peri-implantitis. MATERIAL AND METHODS Clinical parameters: peri-implant probing depth, bleeding on probing, suppuration on probing, and plaque index (PI) were recorded. Samples were collected from 130 participants, divided into peri-implantitis (PI), peri-implant mucositis (PM), and healthy implants (HI) group. Relative expression levels (REL) of Notch 1, Notch 2, Jagged 1, Hes 1, Hey 1, TNF-α, IL-17, IL-1β, IL-6, RANKL, and OPG mRNA were determined by reverse transcriptase-real-time polymerase chain reaction. Quantitation of Notch 1, Il-17, and IL-6 proteins was performed using ELISA assays. RESULTS All clinical parameters were significantly higher in PI compared to HI. Significant decrease of Notch 1, and higher REL of Hey 1, IL-1β, IL-6, and RANKL were found in PI compared to HI. PM showed significant increase of IL-1β REL in comparison with HI. In PI versus PM, significantly higher REL was found for Hey 1, TNF-α, IL-17, IL-1β, IL-6, and RANKL. Additionally, higher protein concentrations of IL-6 and IL-17 were detected in PI versus PM and versus HI group. CONCLUSION The combined effect of Notch 1 down-regulation and elevated expression of some key inflammation modulators might result in osteoclast activity increase and subsequent osteolysis in peri-implantitis.
Collapse
Affiliation(s)
- Iva Milinkovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Djinic Krasavcevic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Aleksic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Jezdic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Sasha Jankovic
- Department of Periodontology and Oral Medicine, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|