1
|
Heggie C, Al-Diwani H, Arundel P, Balmer R. Diagnosis and initial management of children presenting with premature loss of primary teeth associated with a systemic condition: A scoping review and development of clinical aid. Int J Paediatr Dent 2024; 34:871-890. [PMID: 38609350 DOI: 10.1111/ipd.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Premature loss of primary teeth (PLPT) can be a rare presentation of systemic medical conditions. Premature loss of primary teeth may present a diagnostic dilemma to paediatric dentists. AIMS To identify systemic conditions associated with PLPT and develop a clinical aid. DESIGN OVID Medline, Embase and Web of Science were searched up to March 2023. Citation searching of review publications occurred. Exclusion occurred for conference abstracts, absence of PLPT and absence of English-language full text. RESULTS Seven hundred and ninety-one publications were identified via databases and 476 by citation searching of review articles. Removal of 390 duplicates occurred. Following the exclusion of 466 records on abstract review, 411 publications were sought for retrieval, of which 142 met inclusion criteria. Thirty-one systemic conditions were identified. For 19 conditions, only one publication was identified. The majority of publications, 91% (n = 129), were case reports or series. Most publications, 44% (n = 62), were related to hypophosphatasia, and 25% (n = 35) were related to Papillon-Lefèvre. Diagnostic features were synthesised, and a clinical aid was produced by an iterative consensus approach. CONCLUSIONS A diverse range of systemic diseases are associated with PLPT. Evidence quality, however, is low, with most diseases having a low number of supporting cases. This clinical aid supports paediatric dentists in differential diagnosis and onward referral.
Collapse
|
2
|
Nihal S, Sarfo D, Zhang X, Tesfamichael T, Karunathilaka N, Punyadeera C, Izake EL. Paper electrochemical immunosensor for the rapid screening of Galectin-3 patients with heart failure. Talanta 2024; 274:126012. [PMID: 38554482 DOI: 10.1016/j.talanta.2024.126012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
A paper electrochemical immunosensor for the combined binding and quantification of the heart failure (HF) biomarker Galectin-3 has been developed. The simple design of the new sensor is comprised of paper material that is decorated with gold nanostructures, to maximize its electroactive surface area, and functionalized with target-specific recognition molecules to selectively bind the protein from aqueous solutions. The binding of the protein caused the blockage of the electron flow to the sensor electroactive surface, thus causing its oxidation potential to shift and the corresponding current to reduce quantitatively with the increase in the protein concentration within the working range of 0.5ng/mL-8ng/mL (LOQ-0.5 ng/mL). This novel sensor was able to quantify Galectin-3 concentration in saliva samples from HF patients and healthy controls within 20 min with good reproducibility (RSD = 3.64%), without the need for complex sample processing steps. The electrochemical measurements of the patient samples were cross validated by ELISA where the percent agreement between the two methods was found to be 92.7% (RSD = 7.20%). Therefore, the new paper immunosensor sensor has a strong potential for rapid and cost-effective screening of the Galectin 3 biomarker at points of care, thus supporting the timely diagnosis of heart failure.
Collapse
Affiliation(s)
- Serena Nihal
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Daniel Sarfo
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Nuclear and Analytical Chemistry Research Center (NACRC), Ghana Atomic Energy Commission, Ghana
| | - Xi Zhang
- Menzies Health Institute Queensland (MIHQ), Griffith University, Queensland, Australia
| | - Tuquabo Tesfamichael
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; School of Mechanical, Medical & Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Nuwan Karunathilaka
- Menzies Health Institute Queensland (MIHQ), Griffith University, Queensland, Australia
| | - Chamindie Punyadeera
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Queensland, Australia; Menzies Health Institute Queensland (MIHQ), Griffith University, Queensland, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Biomedical Technology, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|