1
|
Yadalam PK, Neelakandan A, Arunraj R, Anegundi RV, Ardila CM. Exploring the interplay between Porphyromonas gingivalis KGP gingipain, herpes virus MicroRNA-6, and Icp4 transcript in periodontitis: Computational and clinical insights. PLoS One 2024; 19:e0312162. [PMID: 39480863 PMCID: PMC11527181 DOI: 10.1371/journal.pone.0312162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Porphyromonas gingivalis, a major pathogen in periodontitis, produces KGP (Lys-gingipain), a cysteine protease that enhances bacterial virulence by promoting tissue invasion and immune evasion. Recent studies highlight microRNAs' role in viral latency, potentially affecting lytic replication through host mechanisms. Herpes virus (HSV) establishes latency via interactions between microRNA-6 (miRH-6) and the ICP4 transcription factor in neural ganglia. This suggests a potential link between periodontitis and HSV-induced latency. This study aims to identify and validate the insilico inhibitory interaction of P. gingivalis KGP with ICP4 transcripts and correlate the presence of viral latency-associated transcript micro-RNA-6 with periodontitis. METHODS Computational docking analysis was performed to investigate the potential interaction between ICP4 and KGP gingipain. The binding energy and RMSD ligand values were calculated to determine the interaction's strength. Ten patients with recurrent clinical attachment loss despite conventional therapy were included in the clinical study. Subgingival tissue samples were collected post-phase I therapy, and HSV microRNA-6 presence was detected via polymerase chain reaction and confirmed through gel electrophoresis. RESULTS Computational docking identified the ICP4-KGP gingipain complex with the lowest binding energy (-288.29 kJ mol^1) and an RMSD ligand of 1.5 Angstroms, indicating strong interaction potential. Gel electrophoresis confirmed miRH-6 presence in all samples. CONCLUSION The identification of miRNA-6 in periodontitis patients and the strong interaction potential between P. gingivalis KGP gingipain and ICP4 transcripts indicate a possible link between bacterial virulence factors and viral latency dynamics in periodontal tissues. These results highlight the complex interplay between oral pathogens, viral microRNAs, and host immune responses in periodontitis.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Rex Arunraj
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, India
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos M. Ardila
- Basic Sciences Department, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
2
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Monteiro Viana JC, da Silva Gomes GE, Duarte Oliveira FJ, Marques de Araújo LN, Teles G, Mourão CF, de Vasconcelos Gurgel BC. The Role of Different Types of Cannabinoids in Periodontal Disease: An Integrative Review. Pharmaceutics 2024; 16:893. [PMID: 39065590 PMCID: PMC11279938 DOI: 10.3390/pharmaceutics16070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This integrative review addresses the potential of the Endocannabinoid System (ES) and cannabinoids in the pathogenesis and treatment of periodontal disease (PD). Cannabinoid receptors are expressed in healthy and inflamed periodontal tissues, indicating a potential regulatory role for SEC in oral homeostasis. Healthy periodontal cells express more CB1 receptors, while inflamed sites show increased CB2 receptors. This suggests a dynamic involvement of the SEC in the inflammatory response associated with PD. Cannabinoids such as cannabidiol (CBD) and cannabinoid receptor agonists such as HU-308, anandamide (AEA), and methanamide (Meta-AEA) have demonstrated promising therapeutic potential in studies. CBD has been associated with the control of bone resorption, antibacterial activity, and increased production of gingival fibroblasts, indicating effects in mitigating the progression of PD. HU-308 demonstrated preventive effects against alveolar bone loss, and anti-inflammatory, osteoprotective, and pro-homeostatic properties in animal models of periodontitis. AEA and Meta-AEA have anti-inflammatory effects by reducing pro-inflammatory mediators such as IL-1, IL-6, and TNF-α. The activation of cannabinoid receptors attenuates inflammatory processes, inhibits alveolar bone loss, exerts antibacterial effects, and promotes tissue repair. However, clinical trials are especially needed to validate these results and explore the therapeutic potential of cannabinoids in the treatment of PD in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
4
|
Carmona Rendón Y, Garzón HS, Bueno-Silva B, Arce RM, Suárez LJ. Cannabinoids in Periodontology: Where Are We Now? Antibiotics (Basel) 2023; 12:1687. [PMID: 38136721 PMCID: PMC10740419 DOI: 10.3390/antibiotics12121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Cannabinoids are a well-documented treatment modality for various immune and inflammatory diseases, including asthma, chronic obstructive pulmonary disease, Crohn's disease, arthritis, multiple sclerosis, and a range of neurodegenerative conditions. However, limited information is available regarding the therapeutic potential of cannabinoids in treating periodontal disease. OBJECTIVE The objective of this study is to analyze the current evidence on the antibacterial and immunomodulatory effects of cannabis and its role in the healing and regeneration processes within periodontal tissues. RESULTS This review discusses the potential role of cannabinoids in restoring periodontal tissue homeostasis. CONCLUSIONS The examination of the endocannabinoid system and the physiological effects of cannabinoids in the periodontium suggests that they possess immunomodulatory and antibacterial properties, which could potentially promote proper tissue healing and regeneration.
Collapse
Affiliation(s)
- Yésica Carmona Rendón
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Hernán Santiago Garzón
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Bruno Bueno-Silva
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, Brazil;
| | - Roger M. Arce
- Department of Periodontics and Oral Hygiene, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA;
| | - Lina Janeth Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|