1
|
Suamphan S, Makeudom A, Krisanaprakornkit S, Meekhantong P, Dechtham E, Leethanakul C. Enhanced osteogenic differentiation of human periodontal ligament cells by mature osteoclasts. J Oral Biosci 2025; 67:100632. [PMID: 39993474 DOI: 10.1016/j.job.2025.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE Several in vitro studies have shown that reverse signaling from osteoclasts regulates osteoblast differentiation and mineralization. However, none of these studies have reported the effects of this signaling pathway on periodontal ligament (PDL) cells. Therefore, in this study, we aimed to investigate the interaction between receptor activators of nuclear factor kappa B (RANK) released from mature human osteoclasts and the membranous RANK ligand (RANKL) in human PDL cells. METHODS Multinucleated mature human osteoclasts were differentiated from peripheral blood mononuclear cells upon incubation with recombinant macrophage colony-stimulating factor and RANKL. Mature osteoclasts and human PDL cells were characterized. A mature osteoclast-conditioned medium (OC-CM) was used to induce osteogenic differentiation of PDL cells. Mechanistic analysis of RANK-RANKL reverse signaling were conducted to determine the regulation of osteogenic induction using conditioned medium from mature osteoclasts treated with GW4869 (GW-OC-CM) or PDL cells pretreated with recombinant human osteoprotegerin (OPG). RESULTS OC-CM significantly upregulated the mRNA expression of osteogenic genes and enhanced the osteogenic differentiation and biomineralization of PDL cells (p < 0.05). GW-OC-CM significantly reduced the expression of osteogenic genes, osteogenic differentiation, and biomineralization in PDL cells (p < 0.05). Similarly, the pretreatment of PDL cells with OPG before OC-CM treatment significantly reduced the osteogenic induction of PDL cells (p < 0.05). CONCLUSION Mature osteoclasts can induce osteogenesis in human PDL cells via RANK-RANKL reverse signaling.
Collapse
Affiliation(s)
- Sumit Suamphan
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | | | - Ekapong Dechtham
- School of Dentistry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
2
|
Berthelot R, Variola F. Investigating the interplay between environmental conditioning and nanotopographical cueing on the response of human MG63 osteoblastic cells to titanium nanotubes. Biomater Sci 2025; 13:946-968. [PMID: 39404078 DOI: 10.1039/d4bm00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Titanium nanotubular surfaces have been extensively studied for their potential use in biomedical implants due to their ability to promote relevant phenomena associated with osseointegration, among other functions. However, despite the large body of literature on the subject, potential synergistic/antagonistic effects resulting from the combined influence of environmental variables and nanotopographical cues remain poorly investigated. Specifically, it is still unclear whether the nanotube-induced variations in cellular activity are preserved across different biochemical contexts. To bridge this gap, this study systematically evaluates the combined influence of nanotopographical cues and environmental factors on human MG63 osteoblastic cells. To this end, we capitalized on a triphasic anodization protocol to create nanostructured surfaces characterized by an average nanotube inner diameter of 25 nm (NT1) and 82 nm (NT2), as well as a two-tiered honeycomb (HC) architecture. A variable glucose content was chosen as the environmental modifier due to its well-known ability to affect specific functions of MG63 cells. Alkaline phosphatase (ALP), viability/metabolic activity and proliferation were quantified to identify the suitable preconditioning window required for dictating a change in behaviour without significantly damaging cells. Successively, a combination of immunofluorescence, colorimetric assays, live cell imaging and western blots quantified viability/metabolic activity and cell proliferation, migration and differentiation as a function of the combined effects exerted by the nanostructured substrates and the glucose content. To achieve a thorough understanding of MG63 cell adaptation and response, a comparative analysis table that includes and systematically cross-analyzes all variables from this study was used for interpretation and discussion of the results. Taken together, we have demonstrated that all surfaces mitigate the negative effects of high glucose. However, nanotubular topographies, particularly NT2, elicit a more beneficial outcome in high glucose in respect to untreated titanium. In addition, while NT1 surfaces are associated with the most stable cellular response across varying glucose levels, the NT2 and HC substrates exhibit the strongest enhancement of cell migration, viability/metabolism and differentiation. Moreover, shorter-term processes such as adhesion and proliferation are favored on untreated titanium, while anodized samples support later-term events. Lastly, the role of anodized surfaces is dominant over the effects of environmental glucose, underscoring the importance of carefully considering nanoscale surface features in the design and development of cell-instructive titanium surfaces.
Collapse
Affiliation(s)
- Ryan Berthelot
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
3
|
Maneerat D, Jeerachaipansakul A, Atijit C, Tangjarroenphakdee C, Tipsirisakun P, Hengsanankul N, Krisanaprakornkit W, Krisanaprakornkit S, Makeudom A. Overexpression of inflammatory human caspase-4 in relation to clinical severity of oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol 2025:S2212-4403(25)00773-4. [PMID: 39979138 DOI: 10.1016/j.oooo.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE Involvement of non-canonical inflammasome, comprising inflammatory human caspase-4, caspase-5, and Gasdermin D, in the pathogenesis of oral lichen planus (OLP) has never been demonstrated. We aimed to determine human caspase-4, caspase-5, and Gasdermin D expressions in OLP, to correlate their expressions with OLP severity, and to measure salivary interleukin (IL)-1β levels. STUDY DESIGN OLP and normal oral mucosal specimens (n = 42 each) were processed for immunohistochemistry or immunoblotting. The clinical score for OLP severity was assessed at the most severe site. The immunohistochemical (IHC) score was a summation of intensity and positive cell scores. Salivary IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Median IHC scores of caspase-4 and Gasdermin D in OLP group were significantly greater than those in normal mucosal group (P < .01), consistent with significantly upregulated expressions by immunoblotting (P < .05). The IHC scores of caspase-4 and Gasdermin D were positively correlated with the clinical scores (P < .05). Salivary IL-1β levels in the OLP group were significantly greater than those in the normal mucosal group (P < .001). CONCLUSIONS Our study demonstrates enhanced human caspase-4 and Gasdermin D expressions in relation to increased OLP severity with elevated salivary IL-1β levels, proposing clinical applications of these biomolecules as potential prognostic markers and/or new therapeutic intervention for OLP.
Collapse
Affiliation(s)
| | | | - Chanipa Atijit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Chavanya Tangjarroenphakdee
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Panatda Tipsirisakun
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Nattapat Hengsanankul
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Warisara Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Suttichai Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, Mueang Chiang Rai, Chiang Rai, Thailand.
| |
Collapse
|
4
|
Jirasek P, Jusku A, Frankova J, Urbankova M, Diabelko D, Ruzicka F, Papouskova B, Chytilova K, Vrba J, Havlasek J, Langova K, Storch J, Voborna I, Simanek V, Vacek J. Phytocannabinoids and gingival inflammation: Preclinical findings and a placebo-controlled double-blind randomized clinical trial with cannabidiol. J Periodontal Res 2024; 59:468-479. [PMID: 38311974 DOI: 10.1111/jre.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 μg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.
Collapse
Affiliation(s)
- Petr Jirasek
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alexandr Jusku
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Marketa Urbankova
- Department of Clinical and Molecular Pathology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Daniel Diabelko
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine of Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Karin Chytilova
- Department of Oral and Maxillofacial Surgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jakub Havlasek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Langova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Voborna
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Institute of Dentistry and Oral Sciences, University Hospital Olomouc, Olomouc, Czech Republic
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Carmona Rendón Y, Garzón HS, Bueno-Silva B, Arce RM, Suárez LJ. Cannabinoids in Periodontology: Where Are We Now? Antibiotics (Basel) 2023; 12:1687. [PMID: 38136721 PMCID: PMC10740419 DOI: 10.3390/antibiotics12121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
INTRODUCTION Cannabinoids are a well-documented treatment modality for various immune and inflammatory diseases, including asthma, chronic obstructive pulmonary disease, Crohn's disease, arthritis, multiple sclerosis, and a range of neurodegenerative conditions. However, limited information is available regarding the therapeutic potential of cannabinoids in treating periodontal disease. OBJECTIVE The objective of this study is to analyze the current evidence on the antibacterial and immunomodulatory effects of cannabis and its role in the healing and regeneration processes within periodontal tissues. RESULTS This review discusses the potential role of cannabinoids in restoring periodontal tissue homeostasis. CONCLUSIONS The examination of the endocannabinoid system and the physiological effects of cannabinoids in the periodontium suggests that they possess immunomodulatory and antibacterial properties, which could potentially promote proper tissue healing and regeneration.
Collapse
Affiliation(s)
- Yésica Carmona Rendón
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Hernán Santiago Garzón
- Programa de Doctorado en Ingeniería, Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Bruno Bueno-Silva
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, Brazil;
| | - Roger M. Arce
- Department of Periodontics and Oral Hygiene, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA;
| | - Lina Janeth Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|