1
|
Cao B, Tang X, Liu C, Xu G, Lei M, Wu F, Chen W, Ni H, Zhang F. Unlocking new Frontiers: The cellular and molecular impact of extracorporeal shock wave therapy (ESWT) on central nervous system (CNS) disorders and peripheral nerve injuries (PNI). Exp Neurol 2025; 384:115052. [PMID: 39532248 DOI: 10.1016/j.expneurol.2024.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurological disorders encompassing both central nervous system (CNS) diseases and peripheral nerve injuries (PNI), represent significant challenges in modern clinical practice. Conditions such as stroke, spinal cord injuries, and carpal tunnel syndrome can cause debilitating impairments, leading to reduced quality of life and placing a heavy burden on healthcare systems. Current treatment strategies, including pharmacological interventions and surgical procedures, often yield limited results, and many patients experience suboptimal outcomes or treatment-associated risks. In light of these limitations, there is a growing interest in exploring non-invasive therapeutic alternatives. Among these, extracorporeal shock wave therapy (ESWT) has eme rged as a promising modality, demonstrating efficacy in musculoskeletal conditions and gaining attention for its potential role in neurological disorders. This manuscript aims to provide a comprehensive overview of the cellular and molecular mechanisms underlying ESWT, focusing on its therapeutic applications in CNS diseases and PNI, thereby shedding light on its potential to revolutionize the treatment landscape for neurological conditions.
Collapse
Affiliation(s)
- Baodan Cao
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Chuangjian Liu
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fan Wu
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang 065000, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
2
|
Chakra MA, Bailly H, Klampke F, Boaz J, Jida M, Yassine AA, McElree IM, Moussa M. An update on the use of stem cell therapy for erectile dysfunction. Asian J Urol 2024; 11:530-544. [PMID: 39534008 PMCID: PMC11551375 DOI: 10.1016/j.ajur.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/24/2023] [Indexed: 11/16/2024] Open
Abstract
Objective This systematic review aimed to analyze animal and human trial data to better understand the efficacy of stem cell therapy (SCT) for erectile dysfunction (ED) and the obstacles that may hinder its application in this field. Methods We searched electronic databases, including PubMed and Scopus, for published studies with the Medical Subject Heading terms of "erectile dysfunction" (AND) "stem cell therapy" (OR) "erectile dysfunction" (AND) "clinical trial of stem cell therapy" (OR) "stem cell therapy" (AND) "sexual dysfunction". The search was limited to English-language journals and full papers only. The initial search resulted in 450 articles, of which 90 relevant to our aims were included in the analysis. Results ED is a multifactorial disease. Current treatment options rely on pharmacotherapy as well as surgical options. Patients may have side effects or unsatisfactory results following the use of these treatment options. SCT may restore pathophysiological changes leading to ED rather than treating the symptoms. It has been evaluated in animal models and shown promising results in humans. Results confirm that SCT does improve erectile function in animals with different types of SC use. In humans, evidence showed promising results, but the trials were heterogeneous and limited mainly by a lack of randomization and the small sample size. Many challenges could limit future research in this field, including ethical dilemmas, regulation, patient recruitment, the cost of therapy, and the lack of a standardized SCT regimen. Repairing and possibly replacing diseased cells, tissue, or organs and eventually retrieving normal function should always be the goals of any therapy, and this can only be guaranteed by SCT. Conclusion SCT is a potential and successful treatment for ED, particularly in patients who are resistant to the classic therapy. SCT may promote nerve regeneration and vascular cell regeneration, not only symptomatic treatment.
Collapse
Affiliation(s)
| | - Hugo Bailly
- Department of Urology, Vivantes Klinikum, Berlin, Germany
| | - Fabian Klampke
- Department of Urology, Vivantes Klinikum, Berlin, Germany
| | - Johann Boaz
- Department of Urology, Royal Liverpool University Hospital, Liverpool, UK
| | | | - Ahmad Abou Yassine
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Ian M. McElree
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohamad Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon
| |
Collapse
|
3
|
Gao Q, Chen J, Zuo W, Wang B, Song T, Xu C, Yu W, Dai Y, Gao S, Zhu L, Yang J. ADSCs labeled with SPIONs tracked in corpus cavernosum of rat and miniature pig by MR imaging and histological examination. Sci Rep 2024; 14:1917. [PMID: 38253558 PMCID: PMC10803813 DOI: 10.1038/s41598-023-51076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in animal models of erectile dysfunction. However, few studies have been carried out using a reliable in vivo imaging method to trace transplanted cells in real time, which is necessary for systematic investigation of cell therapy. The study aims to explore the feasibility of non-invasively monitoring intracavernous injection of ADSCs in rat and miniature pig corpus cavernosum using in vivo magnetic resonance (MR) imaging. Thirty-six male Sprague Dawley rats (10 weeks old) and six healthy, sexually mature male miniature pigs (20 kg weight) were obtained. ADSCs were isolated from paratesticular fat of donor rats and cultured. Then ADSCs were labeled with superparamagnetic iron oxide nanoparticles (SPIONs), a type of MR imaging contrast agent, before transplantation into rats and pigs. After intracavernous injection, all rats and pigs underwent and were analyzed by MR imaging at the day of ADSC transplantation and follow-up at 1, 2 and 4 weeks after transplantation. In addition, penile histological examination was performed on all rats and pigs before (n = 6) and at 1 day (n = 6), 1 week (n = 6), 2 weeks (n = 6) or 4 weeks (n = 12) after ADSC transplantation. SPION-labeled ADSCs demonstrated a strong decreased signal intensity compared with distilled water, unlabeled ADSCs or agarose gel. SPION-labeled ADSCs showed a hypointense signal at all concentrations, and the greatest hypointense signal was observed at the concentration of 1 × 106. MR images of the corpus cavernosum showed a hypointense signal located at the injection site. T2*-weighted signal intensity increased over the course of 1 week after ADSCs transplantation, and demonstrated a similar MR signal with that before ADSCs transplantation. After SPION-labeled ADSC injection, T2*-weighted MR imaging clearly demonstrated a marked hypointense signal in pig corpus cavernosum. The T2*-weighted signal faded over time, similar to the MR imaging results in rats. Obvious acute inflammatory exudation was induced by intracavernous injection, and the T2*-weighted signal intensity of these exudation was higher than that of the injection site. The presence of iron was detected by Prussian blue staining, which demonstrated ADSC retention in rat corpus cavernosum. Lack of cellular infiltrations were demonstrated by H&E staining before and 4 weeks after transplantation, which indicated no negative immune response by rats. Prussian blue staining was positive for iron oxide nanoparticles at 2 weeks after transplantation. SPION-labeled ADSCs showed a clear hypointense signal on T2-weight MRI in vitro and in vivo. The MR signal intensity in the corpus cavernosum of the rats and miniature pigs faded and disappeared over time after ADSC transplantation. These findings suggested that MR imaging could trace transplanted ADSCs in the short term in the corpus cavernosum of animals.
Collapse
Affiliation(s)
- Qingqiang Gao
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wen Yu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Songzhan Gao
- Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Zhu
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
- Department of Surgery, Aheqi County People's Hospital, Xinjiang, China.
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Urology, People's Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Xinjiang, Uygur Autonomous Region, China.
| |
Collapse
|
4
|
Wang CM, Wu BR, Xiang P, Xiao J, Hu XC. Management of male erectile dysfunction: From the past to the future. Front Endocrinol (Lausanne) 2023; 14:1148834. [PMID: 36923224 PMCID: PMC10008940 DOI: 10.3389/fendo.2023.1148834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Erectile dysfunction is a common disease of the male reproductive system, which seriously affects the life quality of patients and their partners. At present, erectile dysfunction is considered as a social-psychological-physiological disease with complex etiology and various treatment methods. Oral PDE5I is the first-line treatment for erectile dysfunction with the advantages of high safety, good effect and non-invasiveness. But intracavernosal injection, hormonal replacement therapy, vacuum erection device, penile prosthesis implantation can also be alternative treatments for patients have organic erectile dysfunction or tolerance to PDE5I. With the rapid development of technologies, some new methods, such as low-intensity extracorporeal shock wave and stem cell injection therapy can even repair the organic damage of the corpora cavernosa. These are important directions for the treatment of male erectile dysfunction in the future. In this mini-review, we will introduce these therapies in detail.
Collapse
Affiliation(s)
| | | | | | - Jun Xiao
- *Correspondence: Jun Xiao, ; Xue-Chun Hu,
| | | |
Collapse
|
5
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
6
|
Zhang J, Xu W, Li C, Meng F, Guan Y, Liu X, Zhao J, Peng J, Wang Y. Tissue Engineering Microtissue: Construction, Optimization, and Application. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:393-404. [PMID: 33719547 DOI: 10.1089/ten.teb.2020.0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Until now, there is no clear definition of microtissue; it usually refers to the microtissue formed by the aggregation of seed cells under the action of cell-cell or cell-extracellular matrix (ECM). Compared with traditional cell monolayer culture, cells are cultivated into a three-dimensional microstructure in a specific way. The microstructure characteristics of microtissue are similar to natural tissues and can promote cell proliferation and differentiation. Therefore, it has a broader range of biomedical applications in tissue engineering. The traditional tissue engineering strategy is to add high-density seed cells and biomolecules on a preformed scaffold to construct a tissue engineering graft. However, due to the destruction of the ECM of the cells cultured in a monolayer during the digestion process with trypsin, the uneven distribution of the cells in the scaffold, and the damage of various adverse factors after the cells are implanted in the scaffold, this strategy is often ineffective, and the subsequent applications still face challenges. This article reviews the latest researches of a new strategy-tissue engineering microtissue strategy; discuss several traditional construction methods, structure, and function optimization; and practical application of microtissue. The review aims to provide a reference for future research on tissue engineering microtissue. Impact statement The traditional tissue engineering strategies have several disadvantages, researchers have conducted extensive research on tissue engineering microtissues in recent years, and they make significant progress. Microtissue is a kind of microtissue with three-dimensional structure, its microstructure is similar to that of natural tissue. In addition, microtissue implantation can protect cells from mechanical interference, inflammation, and other adverse factors. Furthermore, it improves the survival rate of cells and the therapeutic effect of tissue-engineered grafts. However, the practical conditions, advantages, and disadvantages of tissue engineering microtissue have not been fully elucidated. The purpose of this review is to discuss the latest research progress of microtissue and provide a reference for future research.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China
| | - Wenjing Xu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China
| | - Chaochao Li
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China
| | - Fanqi Meng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, P.R. China
| | - Yanjun Guan
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiuzhi Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jie Zhao
- Beijing Tsinghua Changgeng Hospital Affiliated to Tsinghua University, Tsinghua University Clinical School, Beijing, P.R. China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| |
Collapse
|
7
|
Role of regenerative therapies on erectile dysfunction after radical prostatectomy. Int J Impot Res 2021; 33:488-496. [PMID: 33452520 DOI: 10.1038/s41443-020-00406-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023]
Abstract
The present study provides a review of stem cell therapy as a treatment of erectile dysfunction from peer-reviewed human and animal trials. A literature search was conducted in PubMed-Medline, Scopus, Embase, and Cochrane databases. Tweenty-three animal studies and seven human studies in the period from 1st of January 2000 to 1st of Mai 2020 were included. The seven included human studies are primary phase one trials, and most of them treat erectile dysfunction following radical prostatectomy by injection of stem cells into the corpus cavernosum. The primary outcome measure in all human trials is safety and secondary can stem cells play a role in the recovery of erectile function. All studies conclude that it is safe to use stem cells and the majority of the studies demonstrate an improvement in erectile function. The results from both animal and human trials are promising for stem cells as a restorative treatment, but data from large randomized human phase two trials is missing before it can be concluded, that stem cells is an effective treatment for erectile dysfunction in humans.
Collapse
|
8
|
Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional Bioprinting of Cardiovascular Tissues: Emerging Technology. JACC Basic Transl Sci 2021; 6:467-482. [PMID: 34095635 PMCID: PMC8165127 DOI: 10.1016/j.jacbts.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioprinting may overcome challenges in tissue engineering. Unlike conventional tissue engineering approaches, 3D bioprinting has a proven ability to support vascularization of larger scale constructs and has been used for several cardiovascular applications. An overview of 3D bioprinting techniques, in vivo translation, and challenges are described.
Collapse
Affiliation(s)
- Kevin Sung
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nisha R. Patel
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Graduate Program, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Li H, Zhang Z, Fang D, Tang Y, Peng J. Local continuous glial cell derived neurotrophic factor release using osmotic pump promotes parasympathetic nerve rehabilitation in an animal model of cavernous nerve injury induced erectile dysfunction. Transl Androl Urol 2021; 10:258-271. [PMID: 33532315 PMCID: PMC7844500 DOI: 10.21037/tau-20-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Nerve injury-related erectile dysfunction (ED) is one of the types that respond poorly to conventional ED treatments. Our previous experiments have demonstrated the paracrine of various neurotrophic factors (NTFs) by stem cells or other treatment modalities as a potential mechanism in the recovery of nerve injury-related ED. Glial cell derived neurotrophic factor (GDNF) is one of the essential NTFs for the regeneration of nerve fibers, especially for parasympathetic nerves. The aim of this study is to explore if local continuous GDNF administration is beneficial for the functional and histological recovery of nerve injury induced ED. Methods Eight-week-old male Sprague-Dawley rats were used for this study. Rats were randomly grouped into 5: Sham surgery (Sham), bilateral cavernous nerve injury (BCNI) and placebo treatment, BCNI and 0.1 µg/100 µL GDNF treatment (BCNI+GDNF 0.1), BCNI and 1 µg/100 µL GDNF treatment (BCNI+GDNF 1), BCNI and 10 µg/100 µL GDNF treatment (BCNI+GDNF 10). GDNF was administered using an osmotic pump technique which would deliver GDNF locally and continuously for 28 days without the need for external connections or frequent handling of animals. Recovery of sexual function, nerve fibers regeneration, and expression of neurotrophic receptors were examined and compared among groups after the treatment. Results Local continuous GDNF release treatment increased the average number of intromissions in the sexual behavior test and intracavernous pressure (ICP) in the erectile function test in a dose dependent manner. Osmotic pump implantation induced increased local GDNF concentration and mild inflammatory response. Gene expression of GDNF receptors in major pelvic ganglion (MPG) and nerve regeneration along the urethra were partially promoted by GDNF. These changes were associated with increased nerve fibers especially the parasympathetic nerve fibers in dorsal nerve of penis (DNP) in GDNF treated groups. Conclusions In conclusion, our project illustrated the promising effects of local continuous GDNF administration for the functional and histological recovery of nerve injury-induced ED.
Collapse
Affiliation(s)
- Huixi Li
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhichao Zhang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Dong Fang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Tang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Peng
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
10
|
Encapsulated three-dimensional bioprinted structure seeded with urothelial cells: a new construction technique for tissue-engineered urinary tract patch. Chin Med J (Engl) 2020; 133:424-434. [PMID: 31977553 PMCID: PMC7046243 DOI: 10.1097/cm9.0000000000000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Traditional tissue engineering methods to fabricate urinary tract patch have some drawbacks such as compromised cell viability and uneven cell distribution within scaffold. In this study, we combined three-dimensional (3D) bioprinting and tissue engineering method to form a tissue-engineered urinary tract patch, which could be employed for the application on Beagles urinary tract defect mode to verify its effectiveness on urinary tract reconstruction. METHODS Human adipose-derived stem cells (hADSCs) were dropped into smooth muscle differentiation medium to generate induced microtissues (ID-MTs), flow cytometry was utilized to detect the positive percentage for CD44, CD105, CD45, and CD34 of hADSCs. Expression of vascular endothelial growth factor A (VEGFA) and tumor necrosis factor-stimulated gene-6 (TSG-6) in hADSCs and MTs were identified by Western blotting. Then the ID-MTs were employed for 3D bioprinting. The bioprinted structure was encapsulated by transplantation into the subcutaneous tissue of nude mice for 1 week. After retrieval of the encapsulated structure, hematoxylin and eosin and Masson's trichrome staining were performed to demonstrate the morphology and reveal collagen and smooth muscle fibers, integral optical density (IOD) and area of interest were calculated for further semi-quantitative analysis. Immunofluorescent double staining of CD31 and α-smooth muscle actin (α-SMA) were used to reveal vascularization of the encapsulated structure. Immunohistochemistry was performed to evaluate the expression of interleukin-2 (IL-2), α-SMA, and smoothelin of the MTs in the implanted structure. Afterward, the encapsulated structure was seeded with human urothelial cells. Immunofluorescent staining of cytokeratins AE1/AE3 was applied to inspect the morphology of seeded encapsulated structure. RESULTS The semi-quantitative assay showed that the relative protein expression of VEGFA was 0.355 ± 0.038 in the hADSCs vs. 0.649 ± 0.150 in the MTs (t = 3.291, P = 0.030), while TSG-6 expression was 0.492 ± 0.092 in the hADSCs vs. 1.256 ± 0.401 in the MTs (t = 3.216, P = 0.032). The semi-quantitative analysis showed that the mean IOD of IL-2 in the MT group was 7.67 ± 1.26, while 12.6 ± 4.79 in the hADSCs group, but semi-quantitative analysis showed that there was no statistical significance in the difference between the two groups (t = 1.724, P = 0.16). The semi-quantitative analysis showed that IOD was 71.7 ± 14.2 in non-induced MTs (NI-MTs) vs. 35.7 ± 11.4 in ID-MTs for collagen fibers (t = 3.428, P = 0.027) and 12.8 ± 1.9 in NI-MTs vs. 30.6 ± 8.9 in ID-MTs for smooth muscle fibers (t = 3.369, P = 0.028); furthermore, the mean IOD was 0.0613 ± 0.0172 in ID-MTs vs. 0.0017 ± 0.0009 in NI-MTs for α-SMA (t = 5.994, P = 0.027), while 0.0355 ± 0.0128 in ID-MTs vs. 0.0035 ± 0.0022 in NI-MTs for smoothelin (t = 4.268, P = 0.013), which indicate that 3D bioprinted structure containing ID-MTs could mimic the smooth muscle layer of native urinary tract. After encapsulation of the urinary tract patch for additional cell adhesion, urothelial cells were seeded onto the encapsulated structures, and a monolayer urothelial cell was observed. CONCLUSION Through 3D bioprinting and tissue engineering methods, we provided a promising way to fabricate tissue-engineered urinary tract patch for further investigation.
Collapse
|
11
|
Matz EL, Thakker PU, Gu X, Terlecki RP, Dou L, Walker SJ, Lue T, Lin G, Atala A, Yoo JJ, Zhang Y, Jackson JD. Administration of secretome from human placental stem cell-conditioned media improves recovery of erectile function in the pelvic neurovascular injury model. J Tissue Eng Regen Med 2020; 14:1394-1402. [PMID: 32652851 DOI: 10.1002/term.3105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Human placental stem cells (PSCs) enhance histological and functional recovery in a rodent erectile dysfunction (ED) model. We tested the hypothesis that bioactive factors secreted by PSC (i.e., the secretome) mediate functional recovery and that acellular-conditioned media (CM) from PSC culture (PSC-CM) could be used independently to facilitate functional and histological recovery. To identify factors relative to efficacy of PSC, a comparison of CM from PSC and three additional human stem cell populations was performed. CM from human PSC, amniotic fluid stem cells (AFSCs), adipose-derived stem cells (ADSC), and human umbilical vein endothelial cells (HUVECs) was assayed using a semi-quantitative human cytokine antibody array. Male rats, after surgically created ED by neurovascular injury, were randomly divided into four groups: vehicle control (phosphate-buffered saline [PBS]), PSC, PSC-CM, and serum-free media control (SFM) as control. Functional data on intracorporal and mean arterial pressure were obtained, and histological architecture was examined 6 weeks after single injection. PSCs were found to secrete at least 27 cytokines and growth factors at a significantly higher level than the other three cell types. Either single injection of PSC-CM or PSC significantly improved erectile functional recovery and histological architecture compared with SFM or PBS. Injection of the secretome isolated from human PSC improves erectile functional recovery and histological structure in a rat model of neurovascular injury-induced ED. Further characterization of the unique protein expression within the PSC-CM may help to identify the potential for a novel injectable cell-free therapeutic for applicable patients.
Collapse
Affiliation(s)
- Ethan L Matz
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Parth U Thakker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xin Gu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ryan P Terlecki
- Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Lei Dou
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Tom Lue
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Guiting Lin
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.,Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Intracavernous injection of size-specific stem cell spheroids for neurogenic erectile dysfunction: Efficacy and risk versus single cells. EBioMedicine 2020; 52:102656. [PMID: 32062355 PMCID: PMC7016386 DOI: 10.1016/j.ebiom.2020.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intracavernous injection (ICI) of adipose-derived stem cells (ADSCs) has been demonstrated promising for neurogenic erectile dysfunction (ED). However, due to the sponge-like structure of corpus cavernosum (CC) with abundant vessels, ICI was indeed like intravenous injection. Thus, the cell escaping may be a concern of safety and limited therapy, but the issue has not been clearly demonstrated yet. METHODS Suspensions of free ADSCs (FAs) and ADSCs-based spheroids (ASs) with suitable size were intracavernously injected at doses of 0.5, 1, 2, or 4 million cells. The cell loss and safety after ICI, erectile function and histopathologic change, etc. were analyzed with multimodality of methods. FINDINGS Most FAs escaped from sponge-like CC after ICI due to their small size, weakening stem-cell therapeutic efficacy. Worse still, the escaped cells were shown to cause widespread pulmonary embolism (PE), and even death in some animals. Further, it was founded that the therapeutic effect of FAs may be ascribed to the larger cell clusters which spontaneously aggregated before ICI and were trapped within CC after ICI. In comparison, cell loss and PE were significantly avoided by transplanting ASs. Importantly, better therapeutic outcomes were detected after ICI of ASs when compared to FAs with the same cell number. INTERPRETATION Transplantation of size-specific ASs instead of single-cell suspension of FAs for neurogenic ED may be a wiser choice to achieve steady therapeutic outcome and to reduce risks for the future clinical application. FUND: This work was supported by the National Natural Science Foundation of China (81701432) (to Y. Xu). Youth Training Project for Medical science (16QNP129) and Beijing Nova Program of science and technology (Z171100001117115) (to Z. Liu).
Collapse
|
13
|
Hassanin AM, Abdel-Hamid AZ. Cavernous smooth muscles: innovative potential therapies are promising for an unrevealed clinical diagnosis. Int Urol Nephrol 2019; 52:205-217. [DOI: 10.1007/s11255-019-02309-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
|
14
|
Wu H, Tang WH, Zhao LM, Liu DF, Yang YZ, Zhang HT, Zhang Z, Hong K, Lin HC, Jiang H. Nanotechnology-assisted adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury: In vivo cell tracking, optimized injection dosage, and functional evaluation. Asian J Androl 2019; 20:442-447. [PMID: 30004040 PMCID: PMC6116694 DOI: 10.4103/aja.aja_48_18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapy is a potentially promising option for erectile dysfunction; however, its risk of tumorigenicity is a clinical hurdle and the risk is positively related to the number of injected cells. Our previous study showed that nanotechnology improved adipose-derived stem cell (ADSC) therapy for erectile dysfunction of cavernous nerve injury (CNI) by attracting cells in the corpus cavernosum. These results indicated the possibility of using a reduced dosage of ADSCs for intracavernous injection. In this exploratory study, we used lower dosage (2 × 105 cells) of ADSCs for intracavernous injection (ICI) and the nanotechnology approach. Intracavernous pressure and mean arterial pressure were measured at day 28 to assess erectile function. The low-dose ADSC therapy group showed favorable treatment effects, and nanotechnology further improved these effects. In vivo imaging of ICI cells revealed that the fluorescein signals of NanoShuttle-bound ADSCs (NanoADSCs) were much stronger than those of ADSCs at days 0, 1, and 3. Both immunofluorescence and Western blot analysis showed a significant increase in smooth muscle, endothelium, and nerve tissue in the ADSC group compared to that in the CNI group; further improvement was achieved with assisted nanotechnology. These findings demonstrate that nanotechnology can be used to further improve the effect of small dosage of ADSCs to improve erectile function. Abundant NanoADSCs remain in the corpus cavernosum in vivo for at least 3 days. The mechanism of erectile function improvement may be related to the regeneration of the smooth muscle, endothelium, and nerve tissues.
Collapse
Affiliation(s)
- Han Wu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Hao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Lian-Ming Zhao
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - De-Feng Liu
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Zhuo Yang
- Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Hai-Tao Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Chen S, Zhu J, Wang M, Huang Y, Qiu Z, Li J, Chen X, Chen H, Xu M, Liu J, She M, Li H, Yang X, Wang Y, Cai X. Comparison of the therapeutic effects of adipose‑derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med 2019; 44:1006-1014. [PMID: 31257465 PMCID: PMC6658012 DOI: 10.3892/ijmm.2019.4254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the effects of adipose‑derived mesenchymal stem cell (ADSC) and bone marrow mesenchymal stem cell (BMSC) transplantation into the corpora cavernosa of diabetic rats with erectile function. ADSCs and BMSCs were isolated and identified by flow cytometry. Rats with streptozocin‑induced diabetes were screened using apomorphine to obtain a rat model of diabetic erectile dysfunction, followed by transplantation of ADSCs and BMSCs into the corpora cavernosa. Two weeks later, the rats were again injected with apomorphine, the intracavernous pressure (ICP) and mean arterial pressure (MAP) of the penile tissue were measured, and the corpus cavernosum tissues were harvested. Angiogenic endothelial nitric oxide synthase (eNOS) expression was detected by western blotting and immunofluorescence analysis. The blood vessels in the corpus cavernosum were observed following hematoxylin and eosin (H&E) staining, and the expression of collagen was detected by Sirius Red staining. The cellular ultrastructure was examined by transmission electron microscopy. Intracavernous injection of ADSCs significantly increased ICP and ICP/MAP. Western blotting and immunofluorescence results revealed that ADSC treatment improved the expression of eNOS in the penile tissue of diabetic rats. The H&E staining results demonstrated that ADSC treatment promoted revascularization of the corpus cavernosum, and the results of Sirius Red staining revealed that ADSC treatment reduced penile collagen in diabetic rats. Transmission electron microscopy examination revealed that the ultrastructure of the tissues in the ADSC‑treated group was more complete compared with that in the untreated diabetic model group. In conclusion, ADSCs were found to be more effective compared with BMSCs in treating diabetes‑related erectile dysfunction.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Mingzhu Wang
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Yanting Huang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Zhuolin Qiu
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jingjing Li
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Xinglu Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jun Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong 510091
| | - Miaoqin She
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510660
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Yi Wang
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiangsheng Cai
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|
16
|
Cui W, Li H, Guan R, Li M, Yang B, Xu Z, Lin M, Tian L, Zhang X, Li B, Liu W, Dong Z, Wang Z, Zheng T, Zhang W, Lin G, Guo Y, Xin Z. Efficacy and safety of novel low-intensity pulsed ultrasound (LIPUS) in treating mild to moderate erectile dysfunction: a multicenter, randomized, double-blind, sham-controlled clinical study. Transl Androl Urol 2019; 8:307-319. [PMID: 31555554 DOI: 10.21037/tau.2019.07.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background In our previous study, a novel low-intensity pulsed ultrasound (LIPUS) therapeutic device has been shown to improve erectile function non-invasively in a diabetic-induced erectile dysfunction (ED) animal model. Methods In order to investigate the efficacy and safety of LIPUS in the clinical treatment of patients with ED, a multicenter, randomized, double-blind, sham-treated, controlled clinical study was conducted at five medical centers, and 120 patients with mild to moderate ED were enrolled in the study. Patients were randomized into a sham-treated control group (40 patients) or a LIPUS-treated group (80 patients). LIPUS or sham treatment was applied to both sides of the penis shaft and crus for 5 min in each area, twice a week for four weeks. Assessment of efficacy and safety were evaluated using IIEF-5, Sexual Encounter Profile (SEP)-questionnaires 2/3, Global Assessment Question (GAQ), Erectile Hardness Score (EHS), Erection Quality Scale (EQS) score, and pain assessment [Visual Analogue Scale/Score (VAS)]. Results Ten patients in LIPUS treatment group and 6 patients in sham treatment control group were excluded and the dropout rate is 13.33%. Response to treatment was identified as IIEF-5 score increased more than 2/3/4 points of post-treatment (12W) compared to pre-treatment (0W). The response rate in treatment group was 54/80 (67.50%), which was significantly higher than control group 8/40 (20.00%) at 12 weeks (FAS analysis). The percentage of patients with positive answers to SEP-3 (successful vaginal intercourse) were 58.97%, 64.1%, and 73.08% 4, 8, and 12 weeks after treatment which were significantly higher than 28.95%, 31.58%, and 28.95% respectively in control group (FAS, P<0.05). The positive responsive rates for GAQ in treatment group were about 2 to 3 times of that in control group (P<0.05). No treatment-related adverse events (AEs) were found, including local petechia or ecchymosis and hematuria. Conclusions Current study indicates that LIPUS can safely and effectively treat patients with mild to moderate ED without significant AEs, which is related to the mechanical force of LIPUS and can restore the pathological changes of the corpus cavernosum. LIPUS is a promising alternative treatment for ED treatment in the near future, while further research is remanded.
Collapse
Affiliation(s)
- Wanshou Cui
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Huixi Li
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Ruili Guan
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Meng Li
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Bicheng Yang
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Zhanwei Xu
- Wanbeili Medical instrument Co., Ltd., Beijing 102200, China
| | - Maofan Lin
- Wanbeili Medical instrument Co., Ltd., Beijing 102200, China
| | - Long Tian
- Department of Urology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Bao Li
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Weiguang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Tao Zheng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weixing Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yinglu Guo
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| | - Zhongcheng Xin
- Andrology Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
17
|
Park HJ, Jeong H, Park YH, Yim HW, Ha US, Hong SH, Kim SW, Kim NJ, Lee JY. Adipose Tissue-Derived Stem Cell Therapy for Cavernous Nerve Injury-Induced Erectile Dysfunction in the Rat Model: A Systematic Review and Meta-Analysis Using Methodological Quality Assessment. Int J Stem Cells 2019; 12:206-217. [PMID: 31022999 PMCID: PMC6657942 DOI: 10.15283/ijsc18122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives Few studies were evaluated the effect of blindness on outcome in animal models, though a potential effect of blinding has been reported in clinical trials. We evaluated the effects of adipose tissue-derived stem cells (ADSCs) on cavernous nerve injury (CNI)-induced erectile dysfunction (ED) in the rat and examined how proper blinding of the outcome assessor affected treatment effect. Methods and Results We searched in Pubmed, EMBASE, Cochrane and Web of Science databases from inception to January 2019. We included CNI animal model, randomized controlled experiments, and ADSC intervention. Erectile function and structural changes were assessed by intracavernous pressure and mean arterial pressure (ICP/MAP) ratios, neuronal nitric oxide synthase (nNOS) levels, cavernous smooth muscle and collagen (CSM/collagen) ratios, and cyclic guanosine monophosphate (cGMP). Results Nineteen studies were included in the final meta-analysis. The ICP/MAP ratio of the ADSC treatment group increased compared to the control group (SMD=1.33, 95%CI: 1.11~1.56, I2=72%). The nNOS level (SMD=2.29, 95%CI: 1.74~2.84, I2=75%), CSM/collagen (SMD=2.57, 95%CI: 1.62~3.52; I2=85%), and cGMP (SMD=2.96, 95%CI: 1.82~4.10, I2=62%) were also increased in the ADSC treatment group. Preplanned subgroup analysis was conducted to explore the source of heterogeneity. Five studies with blinded outcome assessment were significantly less effective than the unblinded studies (SMD=1.33, 95%CI: 0.86~1.80; SMD=1.81, 95%CI: 1.17~2.46, respectively). Conclusions ADSCs might be effective in improving erectile function and structural change in CNI-induced ED. However, non-blinded outcome assessors might cause detection bias and overestimate treatment efficacy. Therefore, the ADSC efficacy must be further evaluated with a rigorous study design to avoid bias.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Hyunsuk Jeong
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Hyun Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Jin Kim
- Medical Library, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Kaya-Sezginer E, Yilmaz-Oral D, Gur S. Administration of human umbilical cord blood mononuclear cells restores bladder dysfunction in streptozotocin-induced diabetic rats. Low Urin Tract Symptoms 2019; 11:232-240. [PMID: 31207098 DOI: 10.1111/luts.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study evaluated the effect of human umbilical cord blood mononuclear cells (HUCB-MNCs) on bladder dysfunction in streptozotocin (STZ; 35 mg/kg, i.v.)-induced diabetic rats. METHODS Adult male Sprague-Dawley rats (n = 30) were equally divided into three groups: control group, STZ-diabetic group, and HUCB-MNC-treated group (1 × 106 cells). HUCB-MNCs were isolated by density gradient centrifugation from eight healthy donors and injected into the corpus cavenosum in STZ-diabetic rats 4 weeks after the induction of diabetes. Studies were performed 4 weeks after HUCB-MNC or vehicle injection. In vitro organ bath studies were performed on bladder strips, whereas protein expression of hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and α-smooth muscle actin (SMA) in the bladder and the ratio of smooth muscle cells (SMCs) to collagen were determined using western blotting and Masson trichrome staining. RESULTS Neurogenic contractions of detrusor smooth muscle strips were 55% smaller in the diabetic group than control group (P < 0.05); these contractions were normalized by HUCB-MNC treatment. In addition, HUCB-MNC treatment restored the impaired maximal carbachol-induced contractile response in detrusor strips in the diabetic group (29%; P < 0.05). HUCB-MNC treatment improved the KCl-induced contractile response in the diabetic bladder (68%; P < 0.05), but had no effect on ATP-induced contractile responses. Increased expression of HIF-1α and VEGF protein and decreased expression of α-SMA protein and the SMC/collagen ratio in diabetic rats were reversed by HUCB-MNC. CONCLUSION Administration of HUCB-MNCs facilitates bladder function recovery, which is likely related to downregulation of HIF-1α expression and attenuation of fibrosis in STZ-diabetic rats.
Collapse
Affiliation(s)
- Ecem Kaya-Sezginer
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Cukurova University, Adana, Turkey
| | - Serap Gur
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
19
|
Gu X, Shi H, Matz E, Zhong L, Long T, Clouse C, Li W, Chen D, Chung H, Murphy S, Yoo J, Lin G, Lue T, Atala A, Jackson J, Zhang Y. Long‐term therapeutic effect of cell therapy on improvement in erectile function in a rat model with pelvic neurovascular injury. BJU Int 2019; 124:145-154. [DOI: 10.1111/bju.14631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Gu
- Department of Urology Shanghai Ninth People's Hospital Shanghai JiaoTong University School of Medicine Shanghai China
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Hua Shi
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Ethan Matz
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Liren Zhong
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Ting Long
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Wei Li
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Dong Chen
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - HyunChul Chung
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Sean Murphy
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - James Yoo
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Guiting Lin
- Department of Urology University of California San Francisco San Francisco CA USA
| | - Tom Lue
- Department of Urology University of California San Francisco San Francisco CA USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine Winston‐Salem NCUSA
| |
Collapse
|
20
|
Gur S, Abdel-Mageed AB, Sikka SC, Hellstrom WJG. Advances in stem cell therapy for erectile dysfunction. Expert Opin Biol Ther 2018; 18:1137-1150. [PMID: 30301368 DOI: 10.1080/14712598.2018.1534955] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Stem cell (SC) application is a promising area of research in regenerative medicine, with the potential to treat, prevent, and cure disease. In recent years, the number of studies focusing on SCs for the treatment of erectile dysfunction (ED) and other sexual dysfunctions has increased significantly. AREAS COVERED This review includes critical ED targets and preclinical studies, including the use of SCs and animal models in diabetes, aging, cavernous nerve injury, and Peyronie's disease. A literature search was performed on PubMed for English articles. EXPERT OPINION Combination treatment offers better results than monotherapy to improve pathological changes in diabetic ED. Regenerative medicine is a promising approach for the maintenance of sexual health and erectile function later in life. Cavernous nerve regeneration and vascular recovery employing SC treatment may be focused on radical prostatectomy-induced ED. Notwithstanding, there are a number of hurdles to overcome before SC-based therapies for ED are considered in clinical settings. Paracrine action, not cellular differentiation, appears to be the principal mechanism of action underlying SC treatment of ED. Intracavernosal injection of a single SC type should be the choice protocol for future clinical trials.
Collapse
Affiliation(s)
- Serap Gur
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA.,b Department of Pharmacology, Faculty of Pharmacy , Ankara University , Ankara , Turkey
| | - Asim B Abdel-Mageed
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Suresh C Sikka
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Wayne J G Hellstrom
- a Department of Urology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
21
|
Neuroprotective effects of melatonin on erectile dysfunction in streptozotocin-induced diabetic rats. Int Urol Nephrol 2018; 50:1981-1988. [PMID: 30242548 DOI: 10.1007/s11255-018-1989-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To explore the neuroprotective effects and its possible mechanisms of melatonin (MT) on erectile dysfunction in streptozotocin-induced diabetic rats. METHODS Twenty-eight Sprague-Dawley rats received intraperitoneal injection of streptozotocin and 8 weeks later, the determined diabetic rats randomly got intraperitoneal injection of phosphate buffer solution (PBS) or MT. Another 12 normal rats received PBS treatment. Four weeks later, intracavernous pressure, mean arterial pressure, pathological changes in penis, and major pelvic ganglion (MPG) were measured. Malondialdehyde, superoxide dismutase, p38 and p-p38 levels in penis were detected. RESULTS Diabetic rats showed significant decreases of erectile function accompanied with serious neuropathy in dorsal penile nerve (DPN) and MPG, meanwhile collagen deposition, oxidative stress, and p-p38 levels in penis were elevated. Melatonin treatment partially but significantly improved the erectile function, ameliorated neuropathy in DPN and MPG, and decreased collagen deposition, oxidative stress, and p-p38 levels in diabetic rats. CONCLUSIONS Melatonin treatment helps improve erectile function and ameliorate neuropathy and fibrosis in diabetic rats. These may be associated with reductions in oxidative stress, p38MAPK signaling pathway, and neuropathy.
Collapse
|
22
|
Vakalopoulos I, Memmos D, Mykoniatis I, Toutziaris C, Dimitriadis G. Stem cell therapy in erectile dysfunction: science fiction or realistic treatment option? Hormones (Athens) 2018; 17:315-320. [PMID: 30132303 DOI: 10.1007/s42000-018-0050-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/22/2018] [Indexed: 01/11/2023]
Abstract
Stem cell therapy has become a subject of great interest to researchers worldwide. One of the medical conditions being studied for possible treatment with the use of stem cells is erectile dysfunction, and particularly organic and post-radical prostatectomy erectile dysfunction. However, is stem cell therapy a viable treatment option for erectile dysfunction? The current body of literature provides a wide array of clinical trials performed on animal models simulating different types of human erectile dysfunction. Unfortunately, only a handful of studies have been performed on human patients and almost all of them were phase 1 studies limited by the small sample size. This review aims to summarize the available evidence on the use of stem cell therapy for the treatment of erectile dysfunction and also to provide an overview of upcoming and ongoing clinical trials in this field.
Collapse
Affiliation(s)
- Ioannis Vakalopoulos
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Memmos
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Mykoniatis
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysovalantis Toutziaris
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Dimitriadis
- 1st Department of Urology, Georgios Gennimatas Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Li M, Lei H, Xu Y, Li H, Yang B, Yu C, Yuan Y, Fang D, Xin Z, Guan R. Exosomes derived from mesenchymal stem cells exert therapeutic effect in a rat model of cavernous nerves injury. Andrology 2018; 6:927-935. [PMID: 30009463 DOI: 10.1111/andr.12519] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/25/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Affiliation(s)
- M. Li
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - H. Lei
- Department of Urology; Beijing Chao-Yang Hospital; Capital Medical University; Beijing China
| | - Y. Xu
- Department of Urology; First Hospital Affiliated to Chinese; PLA General Hospital; Beijing China
| | - H. Li
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - B. Yang
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - C. Yu
- Department of Urology; General Hospital of Ningxia Medical University; Ningxia Medical University; Ningxia China
| | - Y. Yuan
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - D. Fang
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - Z. Xin
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - R. Guan
- Molecular Biology Laboratory of Andrology Center; Peking University First Hospital; Peking University; Beijing China
| |
Collapse
|
24
|
Zhu LL, Zhang Z, Jiang HS, Chen H, Chen Y, Dai YT. Superparamagnetic iron oxide nanoparticle targeting of adipose tissue-derived stem cells in diabetes-associated erectile dysfunction. Asian J Androl 2018; 19:425-432. [PMID: 27157506 PMCID: PMC5507087 DOI: 10.4103/1008-682x.179532] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Erectile dysfunction (ED) is a major complication of diabetes, and many diabetic men with ED are refractory to common ED therapies. Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in diabetic animal models. However, inadequate cell homing to damaged sites has limited their efficacy. Therefore, we explored the effect of ADSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) on improving the erectile function of streptozotocin-induced diabetic rats with an external magnetic field. We found that SPIONs effectively incorporated into ADSCs and did not exert any negative effects on stem cell properties. Magnetic targeting of ADSCs contributed to long-term cell retention in the corpus cavernosum and improved the erectile function of diabetic rats compared with ADSC injection alone. In addition, the paracrine effect of ADSCs appeared to play the major role in functional and structural recovery. Accordingly, magnetic field-guided ADSC therapy is an effective approach for diabetes-associated ED therapy.
Collapse
Affiliation(s)
- Lei-Lei Zhu
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Zheng Zhang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - He-Song Jiang
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Hai Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yun Chen
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| | - Yu-Tian Dai
- Department of Andrology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210008, China
| |
Collapse
|
25
|
Yipeng J, Yongde X, Yuanyi W, Jilei S, Jiaxiang G, Jiangping G, Yong Y. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting. Front Physiol 2017; 8:534. [PMID: 28790931 PMCID: PMC5524823 DOI: 10.3389/fphys.2017.00534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Smooth muscle differentiated human adipose derived stem cells (hADSCs) provide a crucial stem cell source for urinary tissue engineering, but the induction of hADSCs for smooth muscle differentiation still has several issues to overcome, including a relatively long induction time and equipment dependence, which limits access to abundant stem cells within a short period of time for further application. Three-dimensional (3D) bioprinting holds great promise in regenerative medicine due to its controllable construction of a designed 3D structure. When evenly mixed with bioink, stem cells can be spatially distributed within a bioprinted 3D structure, thus avoiding drawbacks such as, stem cell detachment in a conventional cell-scaffold strategy. Notwithstanding the advantages mentioned above, cell viability is often compromised during 3D bioprinting, which is often due to pressure during the bioprinting process. The objective of our study was to improve the efficiency of hADSC smooth muscle differentiation and cell viability of a 3D bioprinted structure. Here, we employed the hanging-drop method to generate hADSC microtissues in a smooth muscle inductive medium containing human transforming growth factor β1 and bioprinted the induced microtissues onto a 3D structure. After 3 days of smooth muscle induction, the expression of α-smooth muscle actin and smoothelin was higher in microtissues than in their counterpart monolayer cultured hADSCs, as confirmed by immunofluorescence and western blotting analysis. The semi-quantitative assay showed that the expression of α-smooth muscle actin (α-SMA) was 0.218 ± 0.077 in MTs and 0.082 ± 0.007 in Controls; smoothelin expression was 0.319 ± 0.02 in MTs and 0.178 ± 0.06 in Controls. Induced MTs maintained their phenotype after the bioprinting process. Live/dead and cell count kit 8 assays showed that cell viability and cell proliferation in the 3D structure printed with microtissues were higher at all time points compared to the conventional single-cell bioprinting strategy (mean cell viability was 88.16 ± 3.98 vs. 61.76 ± 15% for microtissues and single-cells, respectively). These results provide a novel way to enhance the smooth muscle differentiation of hADSCs and a simple method to maintain better cell viability in 3D bioprinting.
Collapse
Affiliation(s)
- Jin Yipeng
- Department of Urology, Chinese PLA General HospitalBeijing, China
| | - Xu Yongde
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Wu Yuanyi
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Sun Jilei
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Guo Jiaxiang
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Gao Jiangping
- Department of Urology, Chinese PLA General HospitalBeijing, China
| | - Yang Yong
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| |
Collapse
|
26
|
Hou QL, Ge MY, Zhang CD, Tian DD, Wang LK, Tian HZ, Wang WH, Zhang WD. Adipose tissue-derived stem cell therapy for erectile dysfunction in rats: a systematic review and meta-analysis. Int Urol Nephrol 2017; 49:1127-1137. [PMID: 28417342 DOI: 10.1007/s11255-017-1590-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/09/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We aimed to systematically assess the effect of adipose tissue-derived stem cell (ADSC) therapy and its influential factors on the treatment of erectile dysfunction (ED) in rats. METHODS Two authors independently searched for published studies through PubMed and EMBASE from study inception until August 31, 2016. A meta-analysis was used to combine the effect estimate from the published studies. A subgroup analysis was performed to identify the effect of some influential factors. The pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated by a fixed-effects or random-effects model analysis. RESULTS Twenty studies with a total of 248 rats were included in this meta-analysis. The pooled analysis showed that ADSC therapy significantly increased the ratio of intracavernous pressure and mean arterial pressure (ICP/MAP; SMD 3.46, 95% CI 2.85-4.06; P < 0.001) compared to control therapy. The levels of neuronal nitric oxide synthase (nNOS; SMD 6.37, 95% CI 4.35-8.39; P < 0.001), the cavernous smooth muscle content (CSMC; SMD 3.65, 95% CI 2.65-4.65; P < 0.001), the ratio of cavernous smooth muscle and collagen (CSM/collagen; SMD 4.16, 95% CI 2.59-5.72; P < 0.001), and the cyclic guanosine monophosphate (cGMP; SMD 7.12, 95% CI 2.76-11.48; P = 0.001) were higher following ADSC therapy than following control therapy. Subgroup analysis showed that ADSCs modified by growth or neurotrophic factors significantly recovered erectile function (P < 0.001) compared with ADSC therapy. CONCLUSION The adequate data indicated that ADSC therapy recovered erectile function and regenerated cavernous structures in ED rats, and ADSCs modified by some growth and neurotrophic factors accelerated the recovery of erectile function and cavernous structures in ED rats.
Collapse
Affiliation(s)
- Quan-Liang Hou
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Meng-Ying Ge
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Cheng-da Zhang
- School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Dan-Dan Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lian-Ke Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui-Zi Tian
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wen-Hua Wang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Zhang
- Department of Epidemiology, College of Public Heath, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Xu Y, Xin H, Wu Y, Guan R, Lei H, Fu X, Xin Z, Yang Y. Effect of icariin in combination with daily sildenafil on penile atrophy and erectile dysfunction in a rat model of bilateral cavernous nerves injury. Andrology 2017; 5:598-605. [PMID: 28296277 DOI: 10.1111/andr.12341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Y. Xu
- Wound Healing and Cell Biology Laboratory; Institute of Basic Medical Science; Chinese PLA General Hospital; Beijing China
| | - H. Xin
- Department of Ophthalmology; Beijing ChaoYang Hospital; Capital Medical University; Beijing China
| | - Y. Wu
- Department of Urology; First Hospital Affiliated to Chinese PLA General Hospital; Beijing China
| | - R. Guan
- Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - H. Lei
- Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - X. Fu
- Wound Healing and Cell Biology Laboratory; Institute of Basic Medical Science; Chinese PLA General Hospital; Beijing China
| | - Z. Xin
- Andrology Center; Peking University First Hospital; Peking University; Beijing China
| | - Y. Yang
- Department of Urology; First Hospital Affiliated to Chinese PLA General Hospital; Beijing China
| |
Collapse
|
28
|
Zhou F, Hui Y, Xin H, Xu YD, Lei HE, Yang BC, Guan RL, Li M, Hou JQ, Xin ZC. Therapeutic effects of adipose-derived stem cells-based microtissues on erectile dysfunction in streptozotocin-induced diabetic rats. Asian J Androl 2017; 19:91-97. [PMID: 27345005 PMCID: PMC5227681 DOI: 10.4103/1008-682x.182817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors.
Collapse
Affiliation(s)
- Feng Zhou
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China.,Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu Hui
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China.,Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Hua Xin
- Department of Ophthalmology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Yong-De Xu
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Hong-En Lei
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Bi-Cheng Yang
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Rui-Li Guan
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Meng Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Ningxia 750021, China
| | - Jian-Quan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Zhong-Cheng Xin
- Molecular Biology Laboratory of Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To summarize recent literature on basic stem cell research in erectile dysfunction in cavernous nerve injury, aging, diabetes, and Peyronie's disease and to provide a perspective on clinical translation of these cellular therapies. RECENT FINDINGS Stem cell research has been concentrated on mesenchymal stem (stromal) cells from bone marrow and adipose tissue. Application of both cell types has produced positive effects on erectile function in various animal models of erectile dysfunction. In acute animal models, such as cavernous nerve injury-induced erectile dysfunction and chemically induced Peyronie's disease, engraftment and differentiation have not been observed, and stem cells are believed to interact with the host tissue in a paracrine fashion, whereas in chronic disease models some evidence suggests both engraftment and paracrine factors may support improved function. Clinical trials are now investigating therapeutic efficacy of cellular therapy, whereas the first safety studies in humans have recently been published. SUMMARY Evidence from preclinical studies has established stem cells as a potential curative treatment for erectile dysfunction and early phase clinical trials are currently performed.
Collapse
|
30
|
Xin ZC, Xu YD, Lin G, Lue TF, Guo YL. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction. Asian J Androl 2016; 18:10-5. [PMID: 25926601 PMCID: PMC4736335 DOI: 10.4103/1008-682x.150040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED.
Collapse
Affiliation(s)
- Zhong-Cheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, USA
| | | | | | | | | |
Collapse
|
31
|
Li M, Li G, Lei H, Guan R, Yang B, Gao Z, Hui Y, Chen F, Xin Z. Therapeutic Potential of Adipose-derived Stem Cell-based Microtissues in a Rat Model of Stress Urinary Incontinence. Urology 2016; 97:277.e1-277.e7. [PMID: 27538803 DOI: 10.1016/j.urology.2016.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To examine the potential and mechanism of 3-dimensional cultures of adipose-derived stem cells (ADSCs) in the treatment of stress urinary incontinence (SUI) in a rat model simulating menopause combined with preceding childbirth injury. MATERIALS AND METHODS ADSCs were used to generate microtissues (MTs) with a hanging drop method. Forty-eight postpartum Sprague-Dawley rats were developed as SUI models after 4 hours of vagina dilation followed by bilateral ovariectomy. Ten rats that underwent sham ovariectomy without vagina dilation served as the control group. The SUI rats were divided into 3 groups and received urethral injection of phosphate-buffered saline, ADSCs, and MTs. Specimens were harvested for histology examination and ADSCs tracking at days 1, 3, 7, and 28 (n = 3) postinjection. At day 28, the remaining rats were examined for voiding function. Western blot, immunofluorescence, and immunohistochemistry staining were performed to examine histological changes and cytokine expression. RESULTS The voiding function and histopathological structures were better recovered in the MT group than in the ADSC group. Compared with ADSCs, MTs express higher level of vascular endothelial growth factor and TNFα-stimulated gene/protein 6 in vitro, and represented a higher retention rate in vivo. CONCLUSION Urethral injection of MTs better restored voiding function than ADSCs.
Collapse
Affiliation(s)
- Meng Li
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Guangyong Li
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongen Lei
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Ruili Guan
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Bicheng Yang
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Zhezhu Gao
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China
| | - Yu Hui
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fubao Chen
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhongcheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing, China.
| |
Collapse
|
32
|
Effects of adipose-derived stem cells plus insulin on erectile function in streptozotocin-induced diabetic rats. Int Urol Nephrol 2016; 48:657-69. [DOI: 10.1007/s11255-016-1221-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022]
|
33
|
Takayanagi A, Sasaki M, Kataoka-Sasaki Y, Kobayashi K, Matsuda Y, Oka S, Masumori N, Kocsis JD, Honmou O. Intravenous Preload of Mesenchymal Stem Cells Rescues Erectile Function in a Rat Model of Cavernous Nerve Injury. J Sex Med 2015. [PMID: 26211660 DOI: 10.1111/jsm.12957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION We evaluated the potential preventive effects and mechanisms of intravenously preloaded mesenchymal stem cells (MSCs) for erectile dysfunction (ED) in a cavernous nerve (CN) injury model. METHODS Male Sprague-Dawley (SD) rats were used for this study. Rats were randomized into two groups. One group was intravenously preloaded with MSCs (1.0 × 10(6) cells in 1 mL total fluid volume) and the other was infused with medium alone (1 mL Dulbecco's modified Eagle's medium [DMEM]) for sham control, respectively. Crushed CN injury was induced immediately after infusion. The surgeon was blind to the experimental conditions (MSC or medium). MAIN OUTCOME MEASURES To assess erectile function, we measured the intracavernous pressure (ICP) and arterial pressure (AP) at 1 hour and 2 weeks after CN injury. After measuring the initial ICP/AP of pre-injury (normal) male SD rats, they were randomized into the two groups and infused with MSCs or medium. PKH26-labelled MSCs were used for tracking. To investigate the mRNA expression levels of neurotrophins in the major pelvic ganglia (MPG), we performed real-time quantitative real-time polymerase chain reaction. RESULTS The reduction of ICP/AP and area under the curve of ICP (ICP-AUC) in the MSC group was significantly lower than in the DMEM group (P < 0.05; P < 0.05) at 1 hour. The ICP/AP and ICP-AUC at 2 weeks post-injury in the MSC group was significantly higher than in the DMEM group (P < 0.01; P < 0.05). The preloaded PKH26-labelled MSCs were detected in the MPG and CN using confocal microscopy indicating homing of the cells to the injured nerve and ganglia. Glia cell-derived neurotrophic factor (GDNF) and neurturin, which are important neurotrophic factors for erection, had expression levels in MPG significantly higher in the MSC group than in the DMEM group (P < 0.01, 0.05). CONCLUSION Intravenous preload of MSCs before a CN injury may prevent or reduce experimental ED.
Collapse
Affiliation(s)
- Akio Takayanagi
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ko Kobayashi
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yohei Matsuda
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
34
|
Yeh DC, Chan TM, Harn HJ, Chiou TW, Chen HS, Lin ZS, Lin SZ. Adipose Tissue-Derived Stem Cells in Neural Regenerative Medicine. Cell Transplant 2015; 24:487-92. [PMID: 25647067 DOI: 10.3727/096368915x686940] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.
Collapse
Affiliation(s)
- Da-Chuan Yeh
- Department of Internal Medicine, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Medical Education and Research, China Medical University-An-Nan Hospital, Tainan, Taiwan
| | - Horng-Jyh Harn
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Shui Chen
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Physical Medicine and Rehabilitation, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Zung-Sheng Lin
- Department of Surgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|