1
|
Coluk Y, Yildirim G, Yildirmak S, Peker EGG. Altered brain-derived neurotrophic factor levels and oxidative stress in REM sleep deprivation: a rat model study. BMC Neurol 2025; 25:122. [PMID: 40119302 PMCID: PMC11927282 DOI: 10.1186/s12883-025-04127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is among the modulators associated with cognition and sleep that play a role in sleep disorders. This study aimed at investigating the effects of chronic sleep deprivation and REM sleep deprivation on BDNF levels and oxidative stress markers. METHODS A total of 24 healthy male Wistar albino rats were separated into 3 groups as REM sleep deprivation group, control sleep deprivation group and control group. To create models of 21-day REM sleep deprivation and control sleep deprivation, we used the platform technique. After 21 days blood BDNF, brain tissue BDNF, brain tissue malondialdehyde, glutathione, ascorbic acid, nitrite and nitrate were evaluated. RESULTS Compared with the control group, control sleep deprivation group showed a significant increase in brain tissue levels of BDNF (p = 0.038), whereas a significant decrease was observed in the levels of glutathione (GSH) and nitric oxide (NO) (p:0.036). No statistical difference was observed between the blood levels of BDNF in either group (p: 0.795). CONCLUSION Our results showed decreases in GSH and NO levels and increases in malondialdehyde levels in the sleep deprivation models, reflecting oxidative stress in the brain. Additionally, we observed increases in brain BDNF levels in the control sleep deprivation model.
Collapse
Affiliation(s)
- Yonca Coluk
- Department of Otorhinolaryngology, Faculty of Medicine, Giresun University, Giresun, 28200, Turkey.
| | | | - Sembol Yildirmak
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, 33000, Turkey
| | | |
Collapse
|
2
|
Huang L, Zhang X, Zhang J, Li L, Zhou X, Yang T, An X. Efficacy of non-invasive brain stimulation for post-stroke sleep disorders: a systematic review and meta-analysis. Front Neurol 2024; 15:1420363. [PMID: 39539650 PMCID: PMC11557329 DOI: 10.3389/fneur.2024.1420363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This study aimed to systematically assess the clinical efficacy of non-invasive brain stimulation (NIBS) for treating post-stroke sleep disorders (PSSD). Methods We conducted thorough literature search across multiple databases, including PubMed, Web of Science, EmBase, Cochrane Library, Scopus, China Biology Medicine (CBM); China National Knowledge Infrastructure (CNKI); Technology Periodical Database (VIP), and Wanfang Database, focusing on RCTs examining NIBS for PSSD. Meta-analyses were performed using RevMan 5.4 and Stata 14. Results Eighteen articles were reviewed, including 16 on repetitive Transcranial Magnetic Stimulation (rTMS), one on Theta Burst Stimulation (TBS), and two on transcranial Direct Current Stimulation (tDCS). Meta-analysis results indicated that rTMS within NIBS significantly improved the Pittsburgh Sleep Quality Index (PSQI) score (MD = -1.85, 95% CI [-2.99, -0.71], p < 0.05), the 17-item Hamilton Depression Rating Scale (HAMD-17) score [MD = -2.85, 95% CI (-3.40, -2.30), p < 0.05], and serum brain-derived neurotrophic factor (BDNF) levels [MD = 4.19, 95% CI (2.70, 5.69), p < 0.05], while reducing the incidence of adverse reactions [RR = 0.36, 95% CI (0.23, 0.55), p < 0.05]. TBS significantly improved the PSQI score in patients with PSSD (p < 0.05). Conversely, tDCS significantly improved the HAMD-17 score in PSSD patients [MD = -1.52, 95% CI (-3.41, -0.64), p < 0.05]. Additionally, rTMS improved sleep parameters, including Stage 2 sleep (S2%) and combined Stage 3 and 4 sleep (S3 + S4%) (p < 0.05), while tDCS improved total sleep time (TST) and sleep efficiency (SE) (p < 0.05).Subgroup analysis results indicated: (1) Both LF-rTMS and HF-rTMS improved PSQI scores (p < 0.05). (2) Both rTMS combined with medication and rTMS alone improved PSQI scores (p < 0.05). Compared to the sham/blank group, the rTMS group showed improvements in SE, sleep latency (SL), S1%, S3 + S4%, and REM sleep (REM%). The rTMS combined with medication group showed improved SL compared to the medication-only group (p < 0.05). Conclusion NIBS effectively improves sleep quality, structure, depression levels, and BDNF levels in PSSD patients, while also being safe. Further investigations into the potential of NIBS in PSSD treatment may provide valuable insights for clinical applications. Systematic review registration https://www.crd.york.ac.uk/prospero/, CRD42023485317.
Collapse
Affiliation(s)
- Linyu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingling Zhang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Li
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianyu Zhou
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingyu Yang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuemei An
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Administrative Management Department, Deyang Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
3
|
Gabryelska A, Turkiewicz S, Ditmer M, Gajewski A, Strzelecki D, Białasiewicz P, Chałubiński M, Sochal M. The Complex Relationship between Neuromodulators, Circadian Rhythms, and Insomnia in Patients with Obstructive Sleep Apnea. Int J Mol Sci 2024; 25:8469. [PMID: 39126038 PMCID: PMC11313237 DOI: 10.3390/ijms25158469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype, and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being categorized into either the control or the OSA group. The following questionnaires were completed: Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR. No significant differences were found in neuromodulator levels between OSA patients and controls. The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared to controls (p = 0.007 for both); there were no significant differences between the insomnia groups. The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the role of circadian misalignments in sleep disruptions.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland; (S.T.); (M.D.); (P.B.); (M.S.)
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland; (S.T.); (M.D.); (P.B.); (M.S.)
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland; (S.T.); (M.D.); (P.B.); (M.S.)
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland; (A.G.); (M.C.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland; (S.T.); (M.D.); (P.B.); (M.S.)
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland; (A.G.); (M.C.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland; (S.T.); (M.D.); (P.B.); (M.S.)
| |
Collapse
|
4
|
Chen JH, Chen JY, Wang YC. The effects of exercise programs on sleep architecture in obstructive sleep apnea: a meta-analysis of randomized controlled trials. J Sci Med Sport 2024; 27:293-301. [PMID: 38365534 DOI: 10.1016/j.jsams.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVES Exercise is an effective intervention for obstructive sleep apnea (OSA). However, the effects of exercise on objective sleep architecture in patients with OSA remain unknown. This meta-analysis aimed to collect data from randomized controlled trials of exercise interventions in patients with OSA, with a specific focus on objective sleep parameters derived from polysomnography. METHODS Randomized control trials that targeted patients with OSA aged >18 years, measured sleep using polysomnography after exercise programs, and reported the proportion of sleep stages were included for meta-analysis. Bias was assessed using the revised Cochrane risk-of-bias tool and funnel plots. The random effects model was applied. RESULTS Six studies with a total of 236 patients were included in the meta-analysis. There were no significant differences in the total sleep time (TST), sleep efficiency, sleep onset latency, stage N1 sleep, or rapid eye movement sleep between the exercise and control groups. Participation in an exercise program lasting >12 weeks significantly decreased stage N2 and increased stage N3 sleep as observed in the subgroup analysis. Although this tendency did not reach statistical significance in the total-group analysis, it was significant after excluding the possible confounding effects of heart disease. CONCLUSIONS The exercise program decreased N2 and increased N3 proportions over the TST among patients with OSA, which may correspond to subjective sleep quality. The beneficial effects were significant when the program lasted >12 weeks and after excluding the confounding effects of heart disease. Exercise program duration should be considered when providing clinical advice.
Collapse
Affiliation(s)
- Jian-Hong Chen
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; School of Medicine, Chang Gung University, Taiwan; National Taiwan Sport University, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Taiwan; Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Taiwan
| | - Yen-Chin Wang
- Department of Psychiatry, National Taiwan University Hospital Hsin-Chu Branch, Taiwan.
| |
Collapse
|
5
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
6
|
Shafiq MA, Singh J, Khan ZA, Neary JP, Bardutz HA. Effect of exercise on sleep quality in Parkinson's disease: a mini review. BMC Neurol 2024; 24:49. [PMID: 38291381 PMCID: PMC10826022 DOI: 10.1186/s12883-024-03548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
The growing incidence of Parkinson's Disease (PD) is a major burden on the healthcare system. PD is caused by the degeneration of dopaminergic neurons and is known for its effects on motor function and sleep. Sleep is vital for maintaining proper homeostasis and clearing the brain of metabolic waste. Adequate time spent in each sleep stage can help maintain homeostatic function; however, patients with PD appear to exhibit sleep impairments. Although medications enhance the function of remaining dopaminergic neurons and reduce motor symptoms, their potential to improve sleep is still under question. Recently, research has shifted towards exercise protocols to help improve sleep in patients with PD. This review aims to provide an overview of how sleep is impaired in patients with PD, such as experiencing a reduction in time spent in slow-wave sleep, and how exercise can help restore normal sleep function. A PubMed search summarized the relevant research on the effects of aerobic and resistance exercise on sleep in patients with PD. Both high and low-intensity aerobic and resistance exercises, along with exercises related to balance and coordination, have been shown to improve some aspects of sleep. Neurochemically, sleeping leads to an increase in toxin clearance, including α-synuclein. Furthermore, exercise appears to enhance the concentration of brain-derived neurotrophic factors, which has preliminary evidence to suggest correlations to time spent in slow-wave sleep. More research is needed to further elucidate the physiological mechanism pertaining to sleep and exercise in patients with PD.
Collapse
Affiliation(s)
- M Abdullah Shafiq
- College of Medicine, University of Saskatchewan Regina Campus, 1440 14 Ave, Regina, SK, S4P 0W5, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Zain A Khan
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada
| | - Holly A Bardutz
- Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Pkwy, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
7
|
Qi L, Cheng Y, Sun S, Wan H. The administration of rhBmal1 reduces sleep deprivation-induced anxiety and cognitive impairment in mice. World J Biol Psychiatry 2024; 25:43-53. [PMID: 37640026 DOI: 10.1080/15622975.2023.2252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND In mammals, circadian rhythms control metabolism, immunological response and reproductive processes. Bmal1 (brain and muscle Arnt-like protein-1) is a key element in the regulation of circadian rhythms. METHODS This investigation explores the pathophysiological effects of sleep deprivation in a mouse model as well as the potential underlying mechanisms. A mouse sleep deprivation model was constructed using a modified multi-platform water environment method. The anxiety-like behaviours of mice were assessed by the open field test and elevated plus maze, and the cognitive function of mice was tested by the nest-building test. The expression levels of targeted genes were determined by Western blotting assay and RT-qPCR assay. RESULTS We found that sleep deprivation profoundly enhanced anxiety levels and impaired cognitive function in mice. Sleep deprivation also reduced the expression levels of Bmal1 and BDNF (brain-derived neurotrophic factor) and increased oxidative stress in the hippocampus of mice. The intraperitoneal injection of human recombinant rhBmal1 protein alleviated sleep deprivation-induced anxiety and cognitive impairment, restored Bmal1 and BDNF levels, and reduced oxidative stress in the hippocampus of mice. CONCLUSIONS rhBmal1 treatment might serve as a potential therapy for mitigating sleep deprivation-related unfavourable symptoms.
Collapse
Affiliation(s)
- Linqing Qi
- Open Mental Department, Qingdao Mental Health Center, Qingdao, China
| | - Youdi Cheng
- Old Age Psychosis Department II, Qingdao Mental Health Center, Qingdao, China
| | - Shan Sun
- Open Mental Department, Qingdao Mental Health Center, Qingdao, China
| | - Hao Wan
- Outpatient Department for Children and Adolescents, Qingdao Mental Health Center, Qingdao, China
| |
Collapse
|
8
|
Ditmer M, Gabryelska A, Turkiewicz S, Sochal M. Investigating the Role of BDNF in Insomnia: Current Insights. Nat Sci Sleep 2023; 15:1045-1060. [PMID: 38090631 PMCID: PMC10712264 DOI: 10.2147/nss.s401271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2025] Open
Abstract
Insomnia is a common disorder defined as frequent and persistent difficulty initiating, maintaining, or going back to sleep. A hallmark symptom of this condition is a sense of nonrestorative sleep. It is frequently associated with other psychiatric disorders, such as depression, as well as somatic ones, including immunomediated diseases. BDNF is a neurotrophin primarily responsible for synaptic plasticity and proper functioning of neurons. Due to its role in the central nervous system, it might be connected to insomnia of multiple levels, from predisposing traits (neuroticism, genetic/epigenetic factors, etc.) through its influence on different modes of neurotransmission (histaminergic and GABAergic in particular), maintenance of circadian rhythm, and sleep architecture, and changes occurring in the course of mood disturbances, substance abuse, or dementia. Extensive and interdisciplinary evaluation of the role of BDNF could aid in charting new areas for research and further elucidate the molecular background of sleep disorder. In this review, we summarize knowledge on the role of BDNF in insomnia with a focus on currently relevant studies and discuss their implications for future projects.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
9
|
Gabryelska A, Turkiewicz S, Ditmer M, Gajewski A, Białasiewicz P, Strzelecki D, Chałubiński M, Sochal M. Evaluation of the Continuous Positive Airway Pressure Effect on Neurotrophins' Gene Expression and Protein Levels. Int J Mol Sci 2023; 24:16599. [PMID: 38068919 PMCID: PMC10706617 DOI: 10.3390/ijms242316599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neurotrophins (NT) might be associated with the pathophysiology of obstructive sleep apnea (OSA) due to concurrent intermittent hypoxia and sleep fragmentation. Such a relationship could have implications for the health and overall well-being of patients; however, the literature on this subject is sparse. This study investigated the alterations in the serum protein concentration and the mRNA expression of the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NTF3), and neurotrophin-4 (NTF4) proteins following a single night of continuous positive airway pressure (CPAP) therapy. This study group consisted of 30 patients with OSA. Venous blood was collected twice after a diagnostic polysomnography (PSG) and PSG with CPAP treatment. Gene expression was assessed with a quantitative real-time polymerase chain reaction. An enzyme-linked immunosorbent assay was used to determine the protein concentrations. After CPAP treatment, BDNF, proBDNF, GDNF, and NTF4 protein levels decreased (p = 0.002, p = 0.003, p = 0.047, and p = 0.009, respectively), while NTF3 increased (p = 0.001). Sleep latency was correlated with ΔPSG + CPAP/PSG gene expression for BDNF (R = 0.387, p = 0.038), NTF3 (R = 0.440, p = 0.019), and NTF4 (R = 0.424, p = 0.025). OSA severity parameters were not associated with protein levels or gene expressions. CPAP therapy could have an impact on the posttranscriptional stages of NT synthesis. The expression of different NTs appears to be connected with sleep architecture but not with OSA severity.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, 90-419 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
10
|
Dikeos D, Wichniak A, Ktonas PY, Mikoteit T, Crönlein T, Eckert A, Kopřivová J, Ntafouli M, Spiegelhalder K, Hatzinger M, Riemann D, Soldatos C. The potential of biomarkers for diagnosing insomnia: Consensus statement of the WFSBP Task Force on Sleep Disorders. World J Biol Psychiatry 2023; 24:614-642. [PMID: 36880792 DOI: 10.1080/15622975.2023.2171479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVES Thus far, the diagnosis of insomnia is based on purely clinical criteria. Although a broad range of altered physiological parameters has been identified in insomniacs, the evidence to establish their diagnostic usefulness is very limited. Purpose of this WFSBP Task Force consensus paper is to systematically evaluate a series of biomarkers as potential diagnostic tools for insomnia. METHODS A newly created grading system was used for assessing the validity of various measurements in establishing the diagnosis of insomnia; these measurements originated from relevant studies selected and reviewed by experts. RESULTS The measurements with the highest diagnostic performance were those derived from psychometric instruments. Biological measurements which emerged as potentially useful diagnostic instruments were polysomnography-derived cyclic alternating pattern, actigraphy, and BDNF levels, followed by heart rate around sleep onset, deficient melatonin rhythm, and certain neuroimaging patterns (mainly for the activity of frontal and pre-frontal cortex, hippocampus and basal ganglia); yet, these findings need replication, as well as establishment of commonly accepted methodology and diagnostic cut-off points. Routine polysomnography, EEG spectral analysis, heart rate variability, skin conductance, thermoregulation, oxygen consumption, HPA axis, and inflammation indices were not shown to be of satisfactory diagnostic value. CONCLUSIONS Apart from psychometric instruments which are confirmed to be the gold standard in diagnosing insomnia, six biomarkers emerge as being potentially useful for this purpose.
Collapse
Affiliation(s)
- Dimitris Dikeos
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Adam Wichniak
- Third Department of Psychiatry, Sleep Medicine Center, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Periklis Y Ktonas
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Faculty of Medicine, University of Basel, Solothurn, Switzerland
| | - Tatjana Crönlein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular & Cognitive Neuroscience (MCN), University of Basel, Basel, Switzerland
| | - Jana Kopřivová
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Maria Ntafouli
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Faculty of Medicine, University of Basel, Solothurn, Switzerland
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Constantin Soldatos
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Norouzi E, Mohammadi R, Fadaei R, Moradi MT, Hosseini H, Rezaie L, Khazaie H. A systematic review and meta-analysis on the levels of brain-derived neurotrophic factor in insomnia patients with and without comorbid depression. BIOL RHYTHM RES 2023; 54:467-478. [DOI: 10.1080/09291016.2023.2222239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 08/28/2024]
Affiliation(s)
- Ebrahim Norouzi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Mohammadi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Hossein Hosseini
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leeba Rezaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
12
|
Rios RL, Kafashan M, Hyche O, Lenard E, Lucey BP, Lenze EJ, Palanca BJA. Targeting Slow Wave Sleep Deficiency in Late-Life Depression: A Case Series With Propofol. Am J Geriatr Psychiatry 2023; 31:643-652. [PMID: 37105885 PMCID: PMC10544727 DOI: 10.1016/j.jagp.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Slow wave sleep (SWS), characterized by large electroencephalographic oscillations, facilitates crucial physiologic processes that maintain synaptic plasticity and overall brain health. Deficiency in older adults is associated with depression and cognitive dysfunction, such that enhancing sleep slow waves has emerged as a promising target for novel therapies. Enhancement of SWS has been noted after infusions of propofol, a commonly used anesthetic that induces electroencephalographic patterns resembling non-rapid eye movement sleep. This paper 1) reviews the scientific premise underlying the hypothesis that sleep slow waves are a novel therapeutic target for improving cognitive and psychiatric outcomes in older adults, and 2) presents a case series of two patients with late-life depression who each received two propofol infusions. One participant, a 71-year-old woman, had a mean of 2.8 minutes of evening SWS prior to infusions (0.7% of total sleep time). SWS increased on the night after each infusion, to 12.5 minutes (5.3% of total sleep time) and 24 minutes (10.6% of total sleep time), respectively. Her depression symptoms improved, reflected by a reduction in her Montgomery-Asberg Depression Rating Scale (MADRS) score from 26 to 7. In contrast, the other participant, a 77-year-old man, exhibited no SWS at baseline and only modest enhancement after the second infusion (3 minutes, 1.3% of total sleep time). His MADRS score increased from 13 to 19, indicating a lack of improvement in his depression. These cases provide proof-of-concept that propofol can enhance SWS and improve depression for some individuals, motivating an ongoing clinical trial (ClinicalTrials.gov NCT04680910).
Collapse
Affiliation(s)
- Rachel L Rios
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - MohammadMehdi Kafashan
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Orlandrea Hyche
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Emily Lenard
- Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Neurology (BPL), Washington University in St. Louis, MO
| | - Eric J Lenze
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ben Julian A Palanca
- Department of Anesthesiology (RLR, MK, OH, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Psychiatry (EL, EJL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Center on Biological Rhythms and Sleep (BPL, BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO; Department of Biomedical Engineering (BJAP), Washington University in St. Louis, St. Louis, MO; Division of Biology and Biomedical Sciences (BJAP), Washington University School of Medicine in St. Louis, St. Louis, MO.
| |
Collapse
|
13
|
Ancelin M, Jaussent I, Ritchie K, Besset A, Ryan J, Dauvilliers Y. Brain-derived neurotrophic factor (BDNF) variants and promoter I methylation are associated with prolonged nocturnal awakenings in older adults. J Sleep Res 2023; 32:e13838. [PMID: 36737401 PMCID: PMC10909562 DOI: 10.1111/jsr.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is important for sleep physiology. This study investigates whether BDNF variants and promoter I methylation may be implicated in sleep disturbances in older adults. Genotyping was performed for seven BDNF single nucleotide polymorphisms (SNPs) in 355 community-dwelling older adults (aged ≥65 years) and BDNF exon 1 promoter methylation was measured in blood samples at baseline (n = 153). Self-reported daytime sleepiness and insomnia, ambulatory polysomnography measures of sleep continuity and architecture, and psychotropic drug intake were assayed during follow-up. Logistic regression adjusted for age, sex, comorbidities, body mass index, and psychotropic drug intake. Associations were found specifically between wake time after sleep onset (WASO) and four SNPs in the participants not taking psychotropic drugs, whereas in those taking drugs, the associations were either not significant (rs6265 and rs7103411) or in the reverse direction (rs11030101 and rs28722151). Higher BDNF methylation levels were found at most CpG units in those with long WASO and this varied according to psychotropic drug use. The reference group with short WASO not taking drugs showed the lowest methylation levels and the group with long WASO taking treatment, the highest levels. Some SNPs also modified the associations, the participants carrying the low-risk genotype having the lower methylation levels. This genetic and epigenetic study demonstrated blood BDNF promoter methylation to be a potential biomarker of prolonged nocturnal awakenings in older people. Our results suggest the modifying effect of psychotropic drugs and BDNF genetic variants in the associations between methylation and WASO.
Collapse
Affiliation(s)
| | | | - Karen Ritchie
- INM, INSERMUniv MontpellierMontpellierFrance
- Institut du Cerveau TrocadéroParisFrance
| | | | - Joanne Ryan
- Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Yves Dauvilliers
- INM, INSERMUniv MontpellierMontpellierFrance
- Sleep‐Wake Disorders UnitDepartment of Neurology, Gui‐de‐Chauliac HospitalCHU MontpellierFrance
| |
Collapse
|
14
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023; 50:6107-6120. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
15
|
Sánchez-García S, Moreno-Tamayo K, Ramírez-Aldana R, García-Peña C, Medina-Campos RH, García Dela Torre P, Rivero-Segura NA. Insomnia Impairs Both the Pro-BDNF and the BDNF Levels Similarly to Older Adults with Cognitive Decline: An Exploratory Study. Int J Mol Sci 2023; 24:ijms24087387. [PMID: 37108547 PMCID: PMC10139029 DOI: 10.3390/ijms24087387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep disorders, including insomnia, are common during aging, and these conditions have been associated with cognitive decline in older adults. Moreover, during the aging process, neurotransmitters, neurohormones, and neurotrophins decrease significantly, leading to the impairment of cognitive functions. In this sense, BDNF, the most abundant neurotrophic factor in the human brain, has been suggested as a potential target for the prevention and improvement of cognitive decline during aging; however, the current evidence demonstrates that the exogenous administration of BDNF does not improve cognitive function. Hence, in the present study, we quantified pro-BDNF (inactive) and BDNF (active) concentrations in serum samples derived from older individuals with insomnia and/or cognitive decline. We used linear regression to analyze whether clinical or sociodemographic variables impacted the levels of BNDF concentration. We observed that insomnia, rather than cognitive decline, is significantly associated with BDNF concentration, and these effects are independent of other variables. To our knowledge, this is the first study that points to the impact of insomnia on improving the levels of BDNF during aging and suggests that opportune treatment of insomnia may be more beneficial to prevent cognitive decline during aging.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Karla Moreno-Tamayo
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | | | - Carmen García-Peña
- Dirección General, Instituto Nacional de Geriatría, Mexico City 10200, Mexico
| | | | - Paola García Dela Torre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | | |
Collapse
|
16
|
Liu H, Wei H, Qian S, Liu J, Xu W, Luo X, Fang J, Liu Q, Cai F. Effects of dexmedetomidine on postoperative sleep quality: a systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol 2023; 23:88. [PMID: 36944937 PMCID: PMC10029163 DOI: 10.1186/s12871-023-02048-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
STUDY OBJECTIVES To assess the effect of dexmedetomidine (DEX) on postoperative sleep quality using polysomnography (PSG) to identify possible interventions for postoperative sleep disturbances. METHODS An electronic search of PubMed/MEDLINE, EMBASE, Cochrane Library and Web of Science was conducted from database inception to November 20, 2022. Randomized controlled trials (RCTs) on the effect of DEX administration on postoperative sleep quality using PSG or its derivatives were included. No language restrictions were applied. The sleep efficiency index (SEI), arousal index (AI), percentages of stage N1, N2 and N3 of non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep were measured in our meta-analysis. RESULTS Five studies, involving 381 participants were included. Administration of DEX significantly improved SEI, lowered AI, decreased the duration of stage N1 sleep and increased the duration of stage N2 sleep compared to placebo groups. There were no significant differences in the duration of stage N3 sleep and REM sleep. DEX administration lowered the postoperative Visual Analogue Scale (VAS) score and improved the Ramsay sedation score with no adverse effect on postoperative delirium (POD). However, high heterogeneity was observed in most of the primary and secondary outcomes. CONCLUSIONS Our study provides support for the perioperative administration of DEX to improve postoperative sleep quality. The optimal dosage and overall effect of DEX on postoperative sleep quality require further investigation using large-scale randomized controlled trials.
Collapse
Affiliation(s)
- Huizi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Hanwei Wei
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jintao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Weicai Xu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaopan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junbiao Fang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qiaoyan Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Fang Cai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
17
|
Ballesio A, Zagaria A, Curti DG, Moran R, Goadsby PJ, Rosenzweig I, Lombardo C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med Rev 2023; 67:101738. [PMID: 36577338 DOI: 10.1016/j.smrv.2022.101738] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is associated with emotional and cognitive functioning, and it is considered a transdiagnostic biomarker for mental disorders. Literature on insomnia related BDNF changes yielded contrasting results and it has never been synthetized using meta-analysis. To fill this gap, we conducted a systematic review and meta-analysis of case-control studies examining the levels of peripheric BDNF in individuals with insomnia and healthy controls using the PRISMA guidelines. PubMed, Scopus, Medline, PsycINFO and CINAHL were searched up to Nov 2022. Nine studies met the inclusion criteria and were assessed using the Newcastle-Ottawa Scale. Eight studies reported sufficient data for meta-analysis. Random-effects models showed lower BDNF in subjects with insomnia (n = 446) than in controls (n = 706) (Hedge's g = -0.86, 95% CI: -1.39 to -0.32, p = .002). Leave-one-out sensitivity analysis confirmed that the pooled effect size was robust and not driven by any single study. However, given the small sample size, the cross-sectional nature of the measurement, and the high heterogeneity of included data, the results should be cautiously interpreted. Progress in the study of BDNF in insomnia is clinically relevant to better understand the mechanisms that may explain the relationship between disturbed sleep and mental disorders.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy.
| | - Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Italy
| | | | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Sleep Disorders Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | | |
Collapse
|
18
|
Guo J, Chen X, Lyu Z, Xiu H, Lin S, Liu F. Repetitive transcranial magnetic stimulation (rTMS) for post-stroke sleep disorders: a systematic review of randomized controlled trials. Neurol Sci 2022; 43:6783-6794. [PMID: 35980480 DOI: 10.1007/s10072-022-06349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Survivors of stroke often experience post-stroke sleep disorders (PSSDs), but pharmacotherapy risks adverse side effects. Transcranial magnetic stimulation (TMS) is potentially a nonpharmacotherapeutic option. This meta-analysis investigated the effects of rTMS to treat PSSD. METHODS Databases were searched for randomized controlled trials (RCTs) of rTMS to treat PSSD, conducted in accordance with the PRISMA 2020 guidelines. Risk-of-bias assessments were performed using the Cochrane risk-of-bias tool. A meta-analysis of the following indexes was performed using RevMan 5.4 software: Pittsburgh sleep quality index; effective rate of sleep improvement; Hamilton Anxiety Rating Scale (for mood); and National Institute of Health Stroke Scale (NIHSS, stroke severity). Mean differences (MDs) and confidence intervals (CIs) were calculated. RESULTS The meta-analysis included 17 RCTs, with 1411 patients overall. The indexes indicated that rTMS could improve the sleep quality, mood, and stroke severity of patients with PSSD: Pittsburgh sleep quality index (12 studies; MD = - 2.51, 95% CI [- 3.24, - 1.79], P < 0.00001); effective rate of sleep improvement (7 studies; MD = 4.03, 95% CI [2.43, 6.68], P < 0.0001); Hamilton Anxiety Rating Scale (2 studies; MD = - 4.05, 95% CI [- 4.77, - 3.32], P < 0.00001); and NIHSS (2 studies; MD = -2.71, 95% CI [- 3.36, - 2.06], P < 0.00001). CONCLUSION The results suggest that rTMS may have positive effects on the sleep quality, mood, and stroke severity of patients with PSSD.
Collapse
Affiliation(s)
- Jiaying Guo
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Xin Chen
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Zecai Lyu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Huoqin Xiu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Shaohong Lin
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, No. 1 Qiu Yang Road, Shangjie, Minhou, Fujian, 350122, Fuzhou, People's Republic of China.
| |
Collapse
|
19
|
Yun J, Park J, Jeong S, Hong D, Kim D. A Mask-Shaped Respiration Sensor Using Triboelectricity and a Machine Learning Approach toward Smart Sleep Monitoring Systems. Polymers (Basel) 2022; 14:polym14173549. [PMID: 36080623 PMCID: PMC9460850 DOI: 10.3390/polym14173549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Daily sleep monitoring is limited by the needs for specialized equipment and experts. This study combines a mask-shaped triboelectric nanogenerator (M-TENG) and machine learning for facile daily sleep monitoring without the specialized equipment or experts. The fabricated M-TENG demonstrates its excellent ability to detect respiration, even distinguishing oral and nasal breath. To increase the pressure sensitivity of the M-TENG, the reactive ion etching is conducted with different tilted angles. By investigating each surface morphology of the polytetrafluoroethylene films according to the reactive ion etching with different tilted angles, the tilted angle is optimized with the angle of 60° and the pressure sensitivity is increased by 5.8 times. The M-TENG can also detect changes in the angle of head and snoring. Various sleep stages can be classified by their distinctive electrical outputs, with the aid of a machine learning approach. As a result, a high averaged-classification accuracy of 87.17% is achieved for each sleep stage. Experimental results demonstrate that the proposed combination can be utilized to monitor the sleep stage in order to provide an aid for self-awareness of sleep disorders. Considering these results, the M-TENG and machine learning approach is expected to be utilized as a smart sleep monitoring system in near future.
Collapse
Affiliation(s)
- Jonghyeon Yun
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
- Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
| | - Jihyeon Park
- Department of Electronics and Information Convergence Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
- Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Korea
| | - Suna Jeong
- Department of Occupational Therapy, College of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea
| | - Deokgi Hong
- Department of Occupational Therapy, College of Medicine, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea
- Correspondence: (D.H.); (D.K.)
| | - Daewon Kim
- Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeon-daero, Yongin 17104, Korea
- Correspondence: (D.H.); (D.K.)
| |
Collapse
|
20
|
Breazeale S, Conley S, Jeon S, Dorsey SG, Kearney J, Yoo B, Redeker NS. Symptom cluster profiles following traumatic orthopaedic injuries. Injury 2022; 53:2524-2532. [PMID: 35351294 PMCID: PMC9232974 DOI: 10.1016/j.injury.2022.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Millions of Americans experience traumatic orthopaedic injuries (TOIs) annually. Post-injury symptoms of acute stress disorder (ASD), anxiety, depression, pain, and sleep disturbance are common. Symptoms often present in clusters. Symptom cluster profiles phenotypically characterize TOI survivors' experiences with clustered symptoms. Expression of brain-derived neurotrophic factor (BDNF) may contribute to the biological underpinnings of symptom cluster profile membership. METHODS We recruited hospitalized TOI survivors within 72 hours of injury. We measured symptoms of ASD with the Acute Stress Disorder Scale and symptoms of anxiety, depression, pain, and sleep disturbance with Patient-Reported Outcomes Measurement Information System (PROMIS) short forms. We measured serum BDNF concentrations with enzyme-linked immunosorbent assay (ELISA) and identified rs6265 genotypes with TaqMan real-time PCR. We performed latent profile analysis to identify the symptom cluster profiles. We identified the variables associated with symptom cluster profile membership with unadjusted and adjusted multinomial logistic regression. RESULTS We identified 4 symptom cluster profiles characterized by symptom severity that we labelled Physical Symptoms Only, and Mild, Moderate, and Severe Psychological Distress. Age, self-identified Black race, resilience, and serum BDNF concentrations were associated with lower odds, and female sex with higher odds, of being in the Psychological Distress clusters. Clinical characteristics and rs6265 genotypes were not associated with symptom cluster profile membership. CONCLUSION TOI survivors experience distinct symptom cluster profiles. Sociodemographic characteristics and serum BDNF concentrations, not clinical characteristics, were associated with symptom cluster profile membership. These findings support comprehensive symptom screening and treatment for all TOI survivors and further evaluating BDNF as a biomarker of post-injury symptom burden.
Collapse
Affiliation(s)
- Stephen Breazeale
- Yale School of Nursing, 400 West Campus Drive, Orange, CT, 06477, USA; The University of Pittsburgh School of Nursing, 3500 Victoria Street, Victoria Building, Pittsburgh, PA, 15261, USA.
| | - Samantha Conley
- Yale School of Nursing, 400 West Campus Drive, Orange, CT, 06477, USA
| | - Sangchoon Jeon
- Yale School of Nursing, 400 West Campus Drive, Orange, CT, 06477, USA
| | - Susan G Dorsey
- University of Maryland School of Nursing, 655 W. Lombard Street, Baltimore, MD, 21201, USA
| | - Joan Kearney
- Yale School of Nursing, 400 West Campus Drive, Orange, CT, 06477, USA
| | - Brad Yoo
- Yale School of Medicine, 47 College Place, New Haven, CT, 06510, USA
| | - Nancy S Redeker
- Yale School of Nursing, 400 West Campus Drive, Orange, CT, 06477, USA
| |
Collapse
|
21
|
Pei W, Meng F, Deng Q, Zhang B, Gu Y, Jiao B, Xu H, Tan J, Zhou X, Li Z, He G, Ruan J, Ding Y. Electroacupuncture promotes the survival and synaptic plasticity of hippocampal neurons and improvement of sleep deprivation-induced spatial memory impairment. CNS Neurosci Ther 2021; 27:1472-1482. [PMID: 34623740 PMCID: PMC8611786 DOI: 10.1111/cns.13722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aims This study aimed to investigate whether electroacupuncture (EA) promotes the survival and synaptic plasticity of hippocampal neurons by activating brain‐derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TrkB)/extracellular signal‐regulated kinase (Erk) signaling, thereby improving spatial memory deficits in rats under SD. Methods In vivo, Morris water maze (MWM) was used to detect the effect of EA on learning and memory, at the same time Western blotting (WB), immunofluorescence (IF), and transmission electron microscopy (TEM) were used to explore the plasticity of hippocampal neurons and synapses, and the expression of BDNF/TrkB/Erk signaling. In vitro, cultured hippocampal neurons were treated with exogenous BDNF and the TrkB inhibitor K252a to confirm the relationship between BDNF/TrkB/Erk signaling and synaptic plasticity. Results Our results showed that EA mitigated the loss of hippocampal neurons and synapses, stimulated hippocampal neurogenesis, and improved learning and memory of rats under SD accompanied by upregulation of BDNF and increased phosphorylation of TrkB and Erk. In cultured hippocampal neurons, exogenous BDNF enhanced the expression of synaptic proteins, the frequency of the postsynaptic currents, and the phosphorylation of TrkB and Erk; these effects were reversed by treatment with K252a. Conclusions Electroacupuncture alleviates SD‐induced spatial memory impairment by promoting hippocampal neurogenesis and synaptic plasticity via activation of BDNF/TrkB/Erk signaling, which provided evidence for EA as a therapeutic strategy for countering the adverse effects of SD on cognition.
Collapse
Affiliation(s)
- Wenya Pei
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqi Meng
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baobao Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Gu
- Guangzhou Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Boyu Jiao
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haoyu Xu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiuqing Tan
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xin Zhou
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiling Li
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guanheng He
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Silva Junior JF, Eckeli AL, Ribeiro CCC, Batista RFL, da Silva AAM, Alves CMC. Influence of excessive daily sleeping and sleep quality on BDNF and NGF serum levels in adolescents. Sleep Med 2021; 84:415-423. [PMID: 34329829 DOI: 10.1016/j.sleep.2021.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The brain-derived neurotrophic factor (BDNF) and neural growth factor (NGF) are widely expressed in the brain and play an important role in neuroplasticity, neurogenesis, and increased neuronal connections. Previous studies have shown that reduced serum levels of these proteins are associated with disorders in human sleep. OBJECTIVE Current study evaluates the prevalence in adolescents of excessive daytime sleepiness (EDS) and sleep quality, and analyzes the influence of these factors on BDNF and NGF serum levels. METHODS A cross-section population-based study was conducted with data from a Brazilian birth cohort, with a sample of five hundred and thirteen 18-19-year-old adolescents. Sleep quality was assessed by the Pittsburgh Sleep Quality Index and EDS by Epworth Sleepiness Scale. Neurotrophins serum levels were measured by Luminex™ technology kits. Analysis consisted of marginal structural models which compared people who were exposed and not exposed to sleep quality and EDS. RESULTS Poor sleep quality and EDS were detected in 62.57% and 36.35% of the sample. Adolescents with poor sleep quality and EDS had -0.39 (p-value = 0.049) and -0.51 pg/ml in NGF (p-value = 0.009). Individuals with self-reported sleep disorder had lower serum levels of NGF (Coef. -0.41, p-value = 0.045). CONCLUSION High prevalence of EDS and low sleep quality in a population of adolescents were evidenced. Poor sleep quality and EDS were associated with lower NGF levels, whilst adolescents with self-reported sleep disorder had lower serum levels of NGF.
Collapse
Affiliation(s)
| | - Alan Luiz Eckeli
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
23
|
Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021; 3:312-341. [PMID: 34207633 PMCID: PMC8293156 DOI: 10.3390/clockssleep3020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.
Collapse
|
24
|
Sochal M, Małecka-Panas E, Gabryelska A, Fichna J, Talar-Wojnarowska R, Szmyd B, Białasiewicz P. Brain-derived neurotrophic factor is elevated in the blood serum of Crohn's disease patients, but is not influenced by anti-TNF-α treatment-A pilot study. Neurogastroenterol Motil 2021; 33:e13978. [PMID: 32869433 DOI: 10.1111/nmo.13978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with depression, pain, or sleep disorders, factors that are thought to be involved in the pathogenesis and clinical course of Crohn's disease (CD). Therefore, the study aimed at assessing the BDNF serum level in patients with CD and evaluates the effect of anti-TNF-α therapy on the BDNF level and its impact on sleep, mood, and pain parameters. METHODS Fifty-eight CD patients and 26 healthy controls (HC) were included in the study. The severity of insomnia symptoms was assessed by the Athens Insomnia Scale (AIS). Subjective pain intensity was estimated by the Visual Analogue Scale (VAS) and Laitinen Pain Scale. Mood level was measured using the Beck Depression Inventory (BDI). Seventeen patients were treated with anti-TNF-α therapy for 14 weeks and were re-examined after treatment. KEY RESULTS CD patients had a higher serum BDNF level than HC (P = .010). No correlation between clinical severity and BDNF was found. There were positive correlations between the BDNF level and the results of AIS (r = 0.253, P = .020), the severity of pain measured using the VAS (r = 0.251, P = .021) and the Laitinen Pain Scale (r = 0.218, P = .047), but not BDI. No differences were observed in the BDNF level before and after 14 weeks of anti-TNF-α therapy. CONCLUSIONS AND INFERENCES Increased BDNF level in CD patients suggests that it may be involved in the pathogenesis and clinical course of the disease. Further research into BDNF might contribute to a better understanding of the effects of sleep and pain on the course of CD.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | | - Bartosz Szmyd
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Huang X, Lin D, Sun Y, Wu A, Wei C. Effect of Dexmedetomidine on Postoperative Sleep Quality: A Systematic Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2161-2170. [PMID: 34045850 PMCID: PMC8149279 DOI: 10.2147/dddt.s304162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
In this article, we conduct a systematic review of the literature to explore the specific role of dexmedetomidine (DEX) on postoperative sleep and its associated mechanisms at present. The electronic database Embase, MEDLINE/PubMed, the Cochrane Library, Web of Science, and Google Scholar were searched. The restriction terms included “dexmedetomidine”, “sleep” and “surgery”. The inclusion criteria were as following: 1) patients 18 years old or older; 2) DEX used in the perioperative period not just for critically ill patients in the intensive care unit (ICU); 3) prospective or retrospective studies. The review articles, conference abstracts, and animal studies were excluded. Out of the 22 articles which met the above criteria, 20 of them were randomized controlled studies and 2 of them were retrospective cohort studies. Infusion of DEX including during the surgery and after surgery at a low or high dose was shown to improve subjective and objective sleep quality, although 2 studies showed there is no evidence that the use of DEX improves sleep quality and 1 showed less sleep efficiency and shorter total sleep time in the DEX group. Other postoperative outcomes evaluated postoperative nausea and vomiting, pain, postoperative delirium bradycardia and hypotension. Outcomes of our systematic review showed that DEX has advantages in improving patients’ postoperative sleep quality. Combined with the use of general anesthetic, DEX provides a reliable choice for procedural sedation.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
26
|
Cristini J, Weiss M, De Las Heras B, Medina-Rincón A, Dagher A, Postuma RB, Huber R, Doyon J, Rosa-Neto P, Carrier J, Amara AW, Roig M. The effects of exercise on sleep quality in persons with Parkinson's disease: A systematic review with meta-analysis. Sleep Med Rev 2021; 55:101384. [PMID: 32987321 DOI: 10.1016/j.smrv.2020.101384] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
We conducted a systematic review with meta-analysis to determine the evidence in support of exercise to improve sleep quality assessed subjectively and objectively in Parkinson's Disease (PD). Standardized mean differences (SMD) comparing the effects of exercise and control interventions on sleep quality with 95% confidence intervals (CI) were calculated. Data from 10 randomized and 2 non-randomized controlled trials, including a total of 690 persons with PD were included. Exercise had a significant positive effect on sleep quality assessed subjectively (SMD = 0.53; 95% CI = 0.16-0.90; p = 0.005). However, the methodological quality of the studies showing positive effects on sleep quality was significantly poorer than the studies showing no effects. Only one study assessed the impact of exercise on objective sleep quality, showing improvements in sleep efficiency assessed with polysomnography (SMD = 0.94; 95% CI = 0.38-1.50; p = 0.001). Exercise performed at moderate to maximal intensities (SMD = 0.46; 95% CI = 0.05-0.87; p = 0.03) had significant effects on subjective sleep quality. In contrast, exercise performed at mild to moderate intensities showed non-significant effects (SMD = 0.76; 95% CI = -0.24-1.76; p = 0.14). These results support the use of exercise to improve sleep quality in persons with PD and reinforce the importance of achieving vigorous exercise intensities. Biases, limitations, practice points and directions for future research are discussed.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Maxana Weiss
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Bernat De Las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Almudena Medina-Rincón
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; Universitat Internacional de Catalunya, Barcelona, Catalonia, Spain
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Reto Huber
- Child Development Center, University Children's Hospital and Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| | - Julien Doyon
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Amy W Amara
- University of Alabama at Birmingham, Alabama, USA
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada. https://memorylab.ca/
| |
Collapse
|
27
|
Tan X, van Egmond LT, Cedernaes J, Benedict C. The role of exercise-induced peripheral factors in sleep regulation. Mol Metab 2020; 42:101096. [PMID: 33045432 PMCID: PMC7585947 DOI: 10.1016/j.molmet.2020.101096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recurrently disrupted sleep is a widespread phenomenon in our society. This is worrisome as chronically impaired sleep increases the risk of numerous diseases that place a heavy burden on health services worldwide, including type 2 diabetes, obesity, depression, cardiovascular disease, and dementia. Therefore, strategies mitigating the current societal sleep crisis are needed. SCOPE OF REVIEW Observational and interventional studies have found that regular moderate to intensive exercise is associated with better subjective and objective sleep in humans, with and without pre-existing sleep disturbances. Here, we summarize recent findings from clinical studies in humans and animal experiments suggesting that molecules that are expressed, produced, and released by the skeletal muscle in response to exercise may contribute to the sleep-improving effects of exercise. MAJOR CONCLUSIONS Exercise-induced skeletal muscle recruitment increases blood concentrations of signaling molecules, such as the myokine brain-derived neurotrophic factor (BDNF), which has been shown to increase the depth of sleep in animals. As reviewed herein, BDNF and other muscle-induced factors are likely to contribute to the sleep-promoting effects of exercise. Despite progress in the field, however, several fundamental questions remain. For example, one central question concerns the optimal time window for exercise to promote sleep. It is also unknown whether the production of muscle-induced peripheral factors promoting sleep is altered by acute and chronic sleep disturbances, which has become increasingly common in the modern 24/7 lifestyle.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
28
|
Tiruvoipati R, Mulder J, Haji K. Improving Sleep in Intensive Care Unit: An Overview of Diagnostic and Therapeutic Options. J Patient Exp 2020; 7:697-702. [PMID: 33294603 PMCID: PMC7705839 DOI: 10.1177/2374373519882234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Good quality sleep is considered to be essential for healthy living and recovering from illness. It would be logical to think that good quality sleep is most required when a patient is critically ill in an intensive care unit (ICU). Several studies have demonstrated poor quality of sleep while the patients are in ICU. Subjective tools such as questionnaires while simple are unreliable to accurately assess sleep quality. Relatively few studies have used standardized polysomnography. The use of novel biological markers of sleep such as serum brain-derived neurotrophic factor concentrations may help in conjunction with polysomnography to assess sleep quality in critically ill patients. Attempts to improve sleep included nonpharmacological interventions including the use of earplugs, eye sleep masks, and pharmacological agents including ketamine, propofol, dexmedetomidine, and benzodiazepines. The evidence for these interventions remains unclear. Further research is needed to assess quality of sleep and improve the sleep quality in intensive care settings.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria, Australia
- School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Juan Mulder
- Department of Respiratory and Sleep Medicine, Frankston Hospital, Frankston, Victoria, Australia
| | - Kavi Haji
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria, Australia
- School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| |
Collapse
|
29
|
Brain-Derived Neurotrophic Factor in the Cerebrospinal Fluid Increases During Electroconvulsive Therapy in Patients With Depression: A Preliminary Report. J ECT 2020; 36:193-197. [PMID: 32118691 DOI: 10.1097/yct.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Preclinical evidence suggests a role for brain-derived neurotrophic factor (BDNF) in the mode of action of electroconvulsive therapy (ECT). Clinical data regarding BDNF levels in serum or plasma are more inconsistent. We measured BDNF levels from the cerebrospinal fluid (CSF) in patients with major depression before and shortly after a course of ECT. METHODS Cerebrospinal fluid and serum BDNF levels were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. RESULTS We included 9 patients with a severe depressive episode within a major depressive disorder into the study. The CSF BDNF concentrations at baseline were lower compared with those CSF BDNF levels after the complete ECT treatment (P = 0.042), whereas no such a constellation was found for serum BDNF. No associations between the BDNF levels and the amount of individual ECT sessions or the reduction of the depressive symptoms were found. CONCLUSIONS For the first time, it has been shown that CSF BDNF concentrations increase during a course of ECT in patients with a severe unipolar depressive episode, which is in line with the neurotrophin hypothesis as a mode of action of ECT, although it was not possible to demonstrate either a dose-effect relation or a relationship with the actual antidepressant effects in our small sample. Major limitation is the small sample size.
Collapse
|
30
|
Sweeten BLW, Sutton AM, Wellman LL, Sanford LD. Predicting stress resilience and vulnerability: brain-derived neurotrophic factor and rapid eye movement sleep as potential biomarkers of individual stress responses. Sleep 2020; 43:5574449. [PMID: 31556950 DOI: 10.1093/sleep/zsz199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
STUDY OBJECTIVES To examine the rapid eye movement sleep (REM) response to mild stress as a predictor of the REM response to intense stress and brain-derived neurotrophic factor (BDNF) as a potential biomarker of stress resilience and vulnerability. METHODS Outbred Wistar rats were surgically implanted with electrodes for recording electroencephalography (EEG) and electromyogram (EMG) and intraperitoneal Data loggers to record body temperature. Blood was also obtained to measure circulating BDNF. After recovery, rats were exposed to mild stress (novel chamber, NC) and later intense stress (shock training, ST), followed by sleep recording. Subsequently, rats were separated into resilient (Res; n=27) or vulnerable (Vul; n = 15) based on whether or not there was a 50% or greater decrease in REM after ST compared to baseline. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of mild and intense stress to determine if BDNF was predictive of the REM response. RESULTS REM totals in the first 4 hours of sleep after exposure to NC predicted REM responses following ST with resilient animals having higher REM and vulnerable animals having lower REM. Resilient rats had significantly higher baseline peripheral BDNF compared to vulnerable rats. CONCLUSIONS These results show that outbred rats display significant differences in post-stress sleep and peripheral BDNF identifying these factors as potential markers of resilience and vulnerability prior to traumatic stress.
Collapse
Affiliation(s)
- Brook L W Sweeten
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Amy M Sutton
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | | |
Collapse
|
31
|
Santiago GTP, de Menezes Galvão AC, de Almeida RN, Mota-Rolim SA, Palhano-Fontes F, Maia-de-Oliveira JP, de Araújo DB, Lobão-Soares B, Galvão-Coelho NL. Changes in Cortisol but Not in Brain-Derived Neurotrophic Factor Modulate the Association Between Sleep Disturbances and Major Depression. Front Behav Neurosci 2020; 14:44. [PMID: 32410966 PMCID: PMC7199815 DOI: 10.3389/fnbeh.2020.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Sleep disturbance is a symptom consistently found in major depression and is associated with a longer course of illness, reduced response to treatment, increased risk of relapse and recurrence. Chronic insomnia has been associated with changes in cortisol and serum brain-derived neurotrophic factor (BDNF) levels, which in turn are also changed in major depression. Here, we evaluated the relationship between sleep quality, salivary cortisol awakening response (CAR), and serum BDNF levels in patients with sleep disturbance and treatment-resistant major depression (n = 18), and in a control group of healthy subjects with good (n = 21) and poor (n = 18) sleep quality. We observed that the patients had the lowest CAR and sleep duration of all three groups and a higher latency to sleep than the healthy volunteers with a good sleep profile. Besides, low CAR was correlated with more severe depressive symptoms and worse sleep quality. There was no difference in serum BDNF levels between groups with distinct sleep quality. Taken together, our results showed a relationship between changes in CAR and in sleep quality in patients with treatment-resistant depression, which were correlated with the severity of disease, suggesting that cortisol could be a physiological link between sleep disturbance and major depression.
Collapse
Affiliation(s)
| | - Ana Cecília de Menezes Galvão
- Laboratory of Hormonal Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raíssa Nóbrega de Almeida
- Laboratory of Hormonal Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sergio Arthuro Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernanda Palhano-Fontes
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João Paulo Maia-de-Oliveira
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Dráulio Barros de Araújo
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nicole Leite Galvão-Coelho
- Laboratory of Hormonal Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
| |
Collapse
|
32
|
Furihata R, Saitoh K, Otsuki R, Murata S, Suzuki M, Jike M, Kaneita Y, Ohida T, Uchiyama M. Association between reduced serum BDNF levels and insomnia with short sleep duration among female hospital nurses. Sleep Med 2020; 68:167-172. [DOI: 10.1016/j.sleep.2019.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
|
33
|
Amara AW, Wood KH, Joop A, Memon RA, Pilkington J, Tuggle SC, Reams J, Barrett MJ, Edwards DA, Weltman AL, Hurt CP, Cutter G, Bamman MM. Randomized, Controlled Trial of Exercise on Objective and Subjective Sleep in Parkinson's Disease. Mov Disord 2020; 35:947-958. [PMID: 32092190 DOI: 10.1002/mds.28009] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sleep dysfunction is common and disabling in persons with Parkinson's Disease (PD). Exercise improves motor symptoms and subjective sleep quality in PD, but there are no published studies evaluating the impact of exercise on objective sleep outcomes. The goal of this study was to to determine if high-intensity exercise rehabilitation combining resistance training and body-weight interval training, compared with a sleep hygiene control improved objective sleep outcomes in PD. METHODS Persons with PD (Hoehn & Yahr stages 2-3; aged ≥45 years, not in a regular exercise program) were randomized to exercise (supervised 3 times a week for 16 weeks; n = 27) or a sleep hygiene, no-exercise control (in-person discussion and monthly phone calls; n = 28). Participants underwent polysomnography at baseline and post-intervention. Change in sleep efficiency was the primary outcome, measured from baseline to post-intervention. Intervention effects were evaluated with general linear models with measurement of group × time interaction. As secondary outcomes, we evaluated changes in other aspects of sleep architecture and compared the effects of acute and chronic training on objective sleep outcomes. RESULTS The exercise group showed significant improvement in sleep efficiency compared with the sleep hygiene group (group × time interaction: F = 16.0, P < 0.001, d = 1.08). Other parameters of sleep architecture also improved in exercise compared with sleep hygiene, including total sleep time, wake after sleep onset, and slow-wave sleep. Chronic but not acute exercise improved sleep efficiency compared with baseline. CONCLUSIONS High-intensity exercise rehabilitation improves objective sleep outcomes in PD. Exercise is an effective nonpharmacological intervention to improve this disabling nonmotor symptom in PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA
| | - Kimberly H Wood
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Psychology, Samford University, Birmingham, Alabama, USA
| | - Allen Joop
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Raima A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer Pilkington
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - S Craig Tuggle
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Reams
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew J Barrett
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - David A Edwards
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Arthur L Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher P Hurt
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gary Cutter
- UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marcas M Bamman
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Center for Exercise Medicine. Birmingham, Alabama, USA.,Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research, Education, and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Zhang P, Li YX, Zhang ZZ, Yang Y, Rao JX, Xia L, Li XY, Chen GH, Wang F. Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study. Nat Sci Sleep 2020; 12:693-704. [PMID: 33117005 PMCID: PMC7549496 DOI: 10.2147/nss.s263528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The objective of this study was to investigate whether the serum biomarkers S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) change in patients with chronic insomnia disorder (CID), and if this is the case, whether the altered levels of these serum biomarkers are associated with poor sleep quality and cognitive decline in CID. PATIENTS AND METHODS Fifty-seven CID outpatients constituted the CID group; thirty healthy controls (HC) were also enrolled. Questionnaires, polysomnography, Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test (NBMT) were used to assess their sleep and neuropsychological function. Serum S100B, GFAP, BDNF, and GDNF were evaluated using enzyme-linked immunosorbent assay. RESULTS The CID group had higher levels of S100B and GFAP and lower levels of BDNF and GDNF than the HC group. Spearman correlation analysis revealed that poor sleep quality, assessed by subjective and objective measures, was positively correlated with S100B level and negatively correlated with BDNF level. GFAP level correlated positively with poor subjective sleep quality. Moreover, S100B and GFAP levels correlated negatively with general cognitive function assessed using MoCA-C. GFAP level correlated positively with poor spatial working memory (SWM) in the NBMT; BDNF level was linked to poor SWM and object recognition memory (ORcM) in the NBMT. However, principal component analysis revealed that serum S100B level was positively linked to the errors in object working memories, BDNF and GDNF concentrations were negatively linked with errors in ORcM, and GFAP concentration was positively correlated with the errors in the SWM and spatial reference memories. CONCLUSION Serum S100B, GFAP, BDNF, and GDNF levels were altered in patients with CID, indicating astrocyte damage, and were associated with insomnia severity or/and cognitive dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ying-Xue Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Zhe-Zhe Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ye Yang
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Ji-Xian Rao
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China
| | - Xue-Yan Li
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Gui-Hai Chen
- Department of Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
35
|
The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression. Neurochem Res 2019; 45:221-231. [PMID: 31782101 DOI: 10.1007/s11064-019-02914-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) mediates the plasticity-related changes that associate with memory processing during sleep. Sleep deprivation and chronic stress are associated with propensity to depression, anxiety, and insomnia. We propose a model by which explain alterations in the CNS and serum expression of BDNF associated with chronic sleep deprivation, depression, and insomnia. Mild sleep deprivation activates the cerebral cortex and brainstem to generate the physiologic drive for non-rapid eye movement (NREM) and rapid eye movement (REM) sleep drive respectively, associated with BDNF upregulation in these regions. This physiological response loses effectiveness with longer episodes or during chronic of total or selective REM sleep loss, which are associated with impaired hippocampal BDNF expression, impaired memory and cognition. Chronic sleep deprivation and insomnia can act as an external stressors and result in depression, characterized by hippocampal BDNF downregulation along with disrupted frontal cortical BDNF expression, as well as reduced levels and impaired diurnal alterations in serum BDNF expression. Acute REM sleep deprivation breaks the cycle by restoration of hippocampal, and possibly restoration of cortical and serum expression of BDNF. The BDNF Val66Met polymorphism alters susceptibility to depression, anxiety, and insomnia by altering availability and expression of BDNF in brain and blood. The proposed model is testable and implies that low levels and low variability in serum BDNF are associated with poor response to anti-depressive medications, electroconvulsive therapy, and REM sleep deprivation, in patients with depression. Our mode is also backed up by the existing clinical evidence but is yet to be investigated.
Collapse
|
36
|
Zhang Y, Ren R, Yang L, Zhou J, Li Y, Shi J, Lu L, Sanford LD, Tang X. Sleep in Huntington's disease: a systematic review and meta-analysis of polysomongraphic findings. Sleep 2019; 42:zsz154. [PMID: 31328779 PMCID: PMC6783889 DOI: 10.1093/sleep/zsz154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/21/2019] [Indexed: 02/05/2023] Open
Abstract
STUDY OBJECTIVES Disturbed overnight sleep is a prominent feature of advanced stage Huntington's disease (HD). Several polysomnography (PSG) studies have reported significant changes of sleep in HD patients, but the findings are not unequivocal. To date, no meta-analysis has investigated the PSG changes in HD patients. The present study meta-analyzed results from studies examining the PSG changes in HD patients compared with controls. METHODS A literature search performed in MEDLINE, EMBASE, All EBM databases, PsycINFO, and CINAHL databases identified seven studies involving 152 HD patients and 144 controls which were included in our meta-analysis. RESULTS Pooled results indicated decreased sleep efficiency, percentage of slow wave sleep and rapid eye movement sleep, and increased percentage of N1 sleep, wake time after sleep onset, and rapid eye movement sleep latency in HD patients compared with controls. We found high heterogeneity in the effect sizes and no indication of systematic publication biases across studies. Meta-regression analyses showed that some of the heterogeneity was explained by age, body mass index (BMI), CAG repeat length, and disease severity of HD patients. CONCLUSIONS Our study showed that polysomnographic abnormalities are present in HD. Our findings also underscore the need for a comprehensive PSG assessment of sleep changes in patients with HD. Furthermore, the effects of age, BMI and CAG repeat length on sleep changes should be carefully considered and closely monitored in the management of HD.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Association between the novel seizure quality index for the outcome prediction in electroconvulsive therapy and brain-derived neurotrophic factor serum levels. Neurosci Lett 2019; 704:164-168. [DOI: 10.1016/j.neulet.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023]
|
38
|
Mikoteit T, Brand S, Eckert A, Holsboer-Trachsler E, Beck J. Brain-derived neurotrophic factor is a biomarker for subjective insomnia but not objectively assessable poor sleep continuity. J Psychiatr Res 2019; 110:103-109. [PMID: 30616157 DOI: 10.1016/j.jpsychires.2018.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Brain-derived neurotrophic factor (BDNF) is a central mediator of the effects of stress on neuronal plasticity. Patients with subjective insomnia have significantly lower serum BDNF (sBDNF) levels. The aims of the present study were to investigate the associations of sBDNF with, 1) subjective and 2) objective sleep; 3) to investigate the associations between dimensions of psychopathology, subjective sleep and sBDNF, and 4) to investigate the associations between insomnia, sBDNF and cortisol. METHODS 60 patients with insomnia (IG; mean age: 40.4 years; 48.3% females) and 30 healthy, age and gender-matched controls (CG) took part in the study. Subjective sleep was assessed using the Insomnia Severity Index (ISI), objective sleep was assessed once via sleep-EEG recordings. Both sBDNF and salivary cortisol were sampled once the following morning. Last, experts rated participants' symptoms of depression and anxiety. RESULTS sBDNF was significantly lower in the IG than in the CG (large effect size; Hedge's g = 1.75), while higher insomnia scores, but not depression or anxiety ratings, predicted lower sBDNF levels. Concerning objective sleep, low sBDNF did not correlate with sleep continuity measures, but with decreased REM-sleep; the latter was also characteristic of the IG. sBDNF and salivary morning cortisol were unrelated. CONCLUSIONS Independently of symptoms of depression or anxiety, sBDNF appears to be a biomarker for the clinical diagnosis of insomnia, but not for objectively assessed poor sleep continuity. A possible link between sBDNF and insomnia seems to be via regulation of REM-sleep, but not salivary morning cortisol.
Collapse
Affiliation(s)
- Thorsten Mikoteit
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; Psychiatric Services Solothurn and Faculty of Medicine of the University of Basel, Solothurn, Switzerland; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Serge Brand
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; University of Basel, Department of Sport, Exercise and Health, Division of Sport and Psychosocial Health, Basel, Switzerland; Kermanshah University of Medical Sciences, Psychiatry Department, Substance Use Disorders Prevention Center, Sleep Disorders Research Center, Kermanshah, Iran
| | - Anne Eckert
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; University of Basel, Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular & Cognitive Neuroscience, Basel, Switzerland
| | | | - Johannes Beck
- University of Basel, Psychiatric Clinics (UPK), Basel, Switzerland; Psychiatric Hospital Sonnenhalde, Riehen, Switzerland
| |
Collapse
|
39
|
Saitoh K, Furihata R, Kaneko Y, Suzuki M, Takahashi S, Uchiyama M. Association of serum BDNF levels and the BDNF Val66Met polymorphism with the sleep pattern in healthy young adults. PLoS One 2018; 13:e0199765. [PMID: 29944703 PMCID: PMC6019675 DOI: 10.1371/journal.pone.0199765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is widely expressed in the brain and plays an important role in neuronal maintenance, plasticity, and neurogenesis. Prior studies have found that decreased serum BDNF levels are associated with perceived stress, depression, or sleep disturbances in humans. STUDY OBJECTIVES To elucidate whether the serum BDNF levels and BDNF genotype were associated with the sleep pattern in healthy young adults. METHODS The study group consisted of 79 healthy paid volunteers (45 men, 34 women) aged 20 to 29 years. Serum BDNF levels were measured with an enzyme-linked immunosorbent assay, and a single-nucleotide polymorphism (Val66Met) in the BDNF gene was assessed with a TaqMan assay. Details of the sleep pattern were obtained from 1-week sleep/wake records. RESULTS Serum BDNF levels were significantly associated with sleep parameters on weekends, whereas no such association was found on weekdays. On weekends, longer total sleep time and time in bed, and later mid-sleep time were associated with lower serum BDNF levels. The difference between mid-sleep time on weekdays and that on weekends, otherwise known as social jetlag, was negatively associated with serum BDNF levels. Met/Met homozygotes of the BDNF Val66Met polymorphism had significantly longer time in bed on weekends than Val/Val homozygotes. Heterozygotes did not differ from Val/Val homozygotes. CONCLUSIONS We first found that serum BDNF levels and the BDNF Val66Met polymorphism in healthy young adults were associated with the sleep pattern on weekends but not with that on weekdays, suggesting that the systems involved in BDNF control may be linked to endogenous sleep characteristics rather than the socially constrained sleep schedule in healthy young adults.
Collapse
Affiliation(s)
- Kaori Saitoh
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Ryuji Furihata
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Kaneko
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Sakae Takahashi
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|