1
|
Katsura S, Matsuura Y, Katagiri A, Toyoda H, Higashiyama M, Masuda Y, Kato T. Repetitive/rhythmic masticatory muscle activity under urethane anesthesia in guinea pigs: a descriptive pilot study. J Oral Biosci 2025:100673. [PMID: 40449842 DOI: 10.1016/j.job.2025.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
OBJECTIVES Rhythmic/repetitive masticatory muscle activity may occur spontaneously during cyclic alternations in unconscious brain states such as sleep. An experimental model is needed to clarify these underlying mechanisms. This study investigated jaw movements and masticatory muscle activity during cyclic state alternations under urethane anesthesia. METHODS Cortical electroencephalography, electrocardiography, and nasal airflow were recorded simultaneously with jaw movements and jaw muscle electromyography activity in seven urethane-anesthetized male guinea pigs (420-594 g). Cortical brain states were divided into deactivated and activated states according to electroencephalogram (EEG) delta and theta powers. The respiratory and heart rates were quantified during the two cortical states. Rhythmic jaw movements (RJMs) were visually scored and the characteristics of masticatory electromyographic bursts were analyzed. Transient changes in cortical, cardiac, and respiratory activities were analyzed in association with RJMs. RESULTS Cortical activity and respiratory and heart rate variabilities differed significantly between activated and deactivated states. Of 321 RJMs, 290 occurred in clusters under urethane anesthesia; The majority (73.7%) were scored during the activated state. RJM episodes were associated with alternate lateral jaw excursion, predominantly with masseter muscle activation, and occasionally with tooth-grinding sounds. RJMs were preceded by decreases in EEG delta activity and transient increases in cardiac and respiratory activities. CONCLUSIONS Masticatory muscles may be activated repetitively and rhythmically during cyclic alternations in brain states under urethane anesthesia. Urethane-anesthetized guinea pigs are a potential experimental model for examining the mechanisms underlying the generation of RJMs in unconscious states, such as sleep bruxism.
Collapse
Affiliation(s)
- Sho Katsura
- Department of Oral Physiology, Department of Oral and Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Yutaka Matsuura
- Division of Nursing, Mie University Graduate School of Medicine. 2-174 Edobashi, Tsu City, Mie, Japan.
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Makoto Higashiyama
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Yuji Masuda
- Matsumoto Dental University, Graduate School of Oral Medicine, Department of Oro-maxillofacial Neurobiology, Shiojiri, Nagano, Japan.
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Sleep Medicine Center Osaka University Hospital, Osaka, Japan.
| |
Collapse
|
2
|
Kato T, Higashiyama M, Katagiri A, Toyoda H, Yamada M, Minota N, Katsura-Fuchihata S, Zhu Y. Understanding the pathophysiology of sleep bruxism based on human and animal studies: A narrative review. J Oral Biosci 2023; 65:156-162. [PMID: 37086888 DOI: 10.1016/j.job.2023.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Sleep bruxism (SB) is a common sleep disorder that affects approximately 20% of children and 10% of adults. It may cause orodental problems, such as tooth wear, jaw pain, and temporal headaches. However, the pathophysiological mechanisms underlying SB remain largely unknown, and a definitive treatment has not yet been established. HIGHLIGHT Human studies involving polysomnography have shown that rhythmic masticatory muscle activity (RMMA) is more frequent in otherwise healthy individuals with SB than in normal individuals. RMMA occurs during light non-rapid eye movement (non-REM) sleep in association with transient arousals and cyclic sleep processes. To further elucidate the neurophysiological mechanisms of SB, jaw motor activities have been investigated in naturally sleeping animals. These animals exhibit various contractions of masticatory muscles, including episodes of rhythmic and repetitive masticatory muscle bursts that occurred during non-REM sleep in association with cortical and cardiac activation, similar to those found in humans. Electrical microstimulation of corticobulbar tracts may also induce rhythmic masticatory muscle contractions during non-REM sleep, suggesting that the masticatory motor system is activated during non-REM sleep via excitatory inputs to the masticatory central pattern generator. CONCLUSION This review article summarizes the pathophysiology of SB and putative origin of RMMA in both human and animal studies. Physiological factors contributing to RMMA in SB have been identified in human studies and may also be present in animal models. Further research is required to integrate the findings between human and animal studies to better understand the mechanisms underlying SB.
Collapse
Affiliation(s)
- Takafumi Kato
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Makoto Higashiyama
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Ayano Katagiri
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroki Toyoda
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaharu Yamada
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan; Osaka University Graduate School of Dentistry, Department of Dental Anesthesiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Noriko Minota
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan; Osaka University Graduate School of Dentistry, Department of Oral and Maxillofacial Surgery, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Sho Katsura-Fuchihata
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yiwen Zhu
- Osaka University Graduate School of Dentistry, Department of Oral Physiology, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
After-effects of acute footshock stress on sleep states and rhythmic masticatory muscle activity during sleep in guinea pigs. Odontology 2022; 110:476-481. [PMID: 35000009 DOI: 10.1007/s10266-021-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
This study investigated the effects of acute footshock stress (FS) on the occurrence of rhythmic masticatory muscle activity (RMMA) during sleep in guinea pigs. Animals were prepared for chronic recordings from electroencephalogram, electrooculogram and electromyograms of neck and masseter muscles. The signals were recorded for six hours on the two successive days: the first day with stress-free condition (non-FS condition) and the second day with acute FS (FS condition). Sleep/wake states and RMMA were scored visually. Sleep variables and the frequency of RMMA occurring during non-rapid eye movement (NREM) sleep were compared during 6-h periods between the two conditions. Compared to non-FS condition, the amount of total sleep and NREM sleep significantly reduced during 2 h following the acute FS in the FS condition. Similarly, the frequency of RMMA significantly increased during 2 h following the acute FS for the FS condition compared to non-FS condition. During 2-6 h after FS in the FS condition, sleep variables and the frequency of RMMA did not differ from those without FS in the non-FS condition. These results suggest that acute experimental stress can induce transient changes in sleep-wake states and the occurrence of RMMA in experimental animals.
Collapse
|
4
|
Yano H, Matsuura Y, Katagiri A, Higashiyama M, Toyoda H, Sato H, Ueno Y, Uzawa N, Yoshida A, Kato T. Changes in cortical, cardiac, and respiratory activities in relation to spontaneous rhythmic jaw movements in ketamine-anesthetized guinea pigs. Eur J Oral Sci 2021; 129:e12817. [PMID: 34289165 DOI: 10.1111/eos.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
It has been reported that rhythmic jaw movements (RJMs) spontaneously occur in ketamine-anesthetized animals. The present study investigated the physiological processes that occur during the cortical, cardiac, and respiratory events which contribute to the genesis of RJMs in animals after supplemental ketamine injections. Fourteen guinea pigs were prepared to allow electroencephalographic, electrocardiographic, and electromyographic activities to be recorded from the digastric muscle, measurement of jaw movements, and nasal expiratory airflow under ketamine-xylazine anesthesia. Rhythmic jaw movements spontaneously occurred with rhythmic digastric muscle contractions, 23-29 minutes after injection of supplemental ketamine (12.5 and 25.0 mg kg-1 , intravenously). The cycle length of RJMs did not differ significantly between the two doses of ketamine (mean±SD: 12.5 mg kg-1 , 326.5 ± 60.0 ms; 25 mg kg-1 , 278.5 ± 45.1 ms). Following injection of ketamine, digastric muscle activity, heart and respiratory rates, and cortical beta power significantly decreased, while cortical delta and theta power significantly increased. These changes were significantly larger in animals given 25.0 mg kg-1 of ketamine than in those given 12.5 mg kg-1 . With the onset of RJMs, the levels of these variables returned to pre-injection levels, regardless of the dose of ketamine administered. These results suggest that, following supplemental ketamine injections, spontaneous RJMs occur during a specific period when the pharmacological effects of ketamine wear off, and that these RJMs are characterized by stereotypical changes in cardiac, respiratory, and cortical activities.
Collapse
Affiliation(s)
- Hiroshi Yano
- Toyonaka Municipal Hospital, Department of Oral and Maxillofacial Surgery, Toyonaka, Japan.,Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral and Maxillofacial Surgery 2, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan.,School of Nursing, University of Shizuoka, Shizuoka, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Makoto Higashiyama
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hajime Sato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yoshio Ueno
- Department of Oral and Maxillofacial Surgery 2, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery 2, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
5
|
Yamada K, Higashiyama M, Toyoda H, Masuda Y, Kogo M, Yoshida A, Kato T. Experimentally induced rhythmic jaw muscle activities during non‐rapid eye movement sleep in freely moving guinea pigs. J Sleep Res 2019; 28:e12823. [DOI: 10.1111/jsr.12823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/15/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ken‐ichi Yamada
- Department of Oral and Maxillofacial Surgery I Osaka University Graduate School of Dentistry Osaka Japan
| | - Makoto Higashiyama
- Department of Oral Physiology Osaka University Graduate School of Dentistry Osaka Japan
| | - Hiroki Toyoda
- Department of Oral Physiology Osaka University Graduate School of Dentistry Osaka Japan
| | - Yuji Masuda
- Department of Oral and Maxillofacial NeurobiologyGraduate School of Oral MedicineMatsumoto Dental University Shiojiri Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery I Osaka University Graduate School of Dentistry Osaka Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology Osaka University Graduate School of Dentistry Osaka Japan
| | - Takafumi Kato
- Department of Oral Physiology Osaka University Graduate School of Dentistry Osaka Japan
- Sleep Medicine Center Osaka University Hospital Osaka Japan
| |
Collapse
|