1
|
Moderie C, Boivin DB. Pathophysiological Models of Hypersomnolence Associated With Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100445. [PMID: 39935825 PMCID: PMC11810709 DOI: 10.1016/j.bpsgos.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 02/13/2025] Open
Abstract
Up to 25% of patients with depression experience hypersomnolence (e.g., excessive daytime sleepiness, hypersomnia, and/or sleep inertia), which is associated with treatment resistance, overall poorer outcomes, and safety concerns while driving. Hypersomnolence can result from various sleep/neurological disorders or side effects from medication but is often medically unexplained in depression. In this review, we aimed to summarize the different pathophysiological models of hypersomnolence in depression to discuss their impact on nosology and to foster the development of better tailored diagnostics and treatments. We identified several potential mechanisms underlying hypersomnolence including a daytime hypoactivity of dopaminergic and noradrenergic systems, nighttime GABA (gamma-aminobutyric acid) hypoactivation, hypoperfusion, and hypoconnectivity in the medial prefrontal cortex, as well as a longer circadian period and light hyposensitivity. In some patients with depression, nighttime hyperarousal can fragment sleep and result in a complaint of excessive daytime sleepiness, thus mimicking hypersomnolence. Others might adopt maladaptive behaviors such as spending excessive time in bed, a term coined clinophilia. Objective markers of hypersomnolence, such as ambulatory ad libitum polysomnography may facilitate distinguishing between conditions that mimic hypersomnolence. Our review identified several clinical targets for hypersomnolence in depression. Low-sodium oxybate, which is approved for idiopathic hypersomnia, needs additional study in patients with depression. Neuromodulation that targets prefrontal cortex anomalies should be systematically explored, while tailored light therapy protocols may mitigate light hyposensitivity. Additionally, cognitive behavioral therapy for hypersomnolence is being developed as a nonpharmacological adjunct to these treatments.
Collapse
Affiliation(s)
| | - Diane B. Boivin
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Rach H, Kilic‐Huck U, Geoffroy PA, Bourcier T, Braun S, Comtet H, Ruppert E, Hugueny L, Hebert M, Reynaud E, Bourgin P. The electroretinography to identify biomarkers of idiopathic hypersomnia and narcolepsy type 1. J Sleep Res 2025; 34:e14278. [PMID: 38993053 PMCID: PMC11744238 DOI: 10.1111/jsr.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Hypersomnia spectrum disorders are underdiagnosed and poorly treated due to their heterogeneity and absence of biomarkers. The electroretinography has been proposed as a proxy of central dysfunction and has proved to be valuable to differentiate certain psychiatric disorders. Hypersomnolence is a shared core feature in central hypersomnia and psychiatric disorders. We therefore aimed to identify biomarkers by studying the electroretinography profile in patients with narcolepsy type 1, idiopathic hypersomnia and in controls. Cone, rod and retinal ganglion cells electrical activity were recorded with flash-electroretinography in non-dilated eye of 31 patients with idiopathic hypersomnia (women 84%, 26.6 ± 5.9 years), 19 patients with narcolepsy type 1 (women 63%, 36.6 ± 12.7 years) and 43 controls (women 58%, 30.6 ± 9.3 years). Reduced cone a-wave amplitude (p = 0.039) and prolonged cone (p = 0.022) and rod b-wave (p = 0.009) latencies were observed in patients with narcolepsy type 1 as compared with controls, while prolonged photopic negative response-wave latency (retinal ganglion cells activity) was observed in patients with idiopathic hypersomnia as compared with controls (p = 0.033). The rod and cone b-wave latency clearly distinguished narcolepsy type 1 from idiopathic hypersomnia and controls (area under the curve > 0.70), and the photopic negative response-wave latency distinguished idiopathic hypersomnia and narcolepsy type 1 from controls with an area under the curve > 0.68. This first original study shows electroretinography anomalies observed in patients with hypersomnia. Narcolepsy type 1 is associated with impaired cone and rod responses, whereas idiopathic hypersomnia is associated with impaired retinal ganglion cells response, suggesting different phototransduction alterations in both hypersomnias. Although these results need to be confirmed with a larger sample size, the electroretinography may be a promising tool for clinicians to differentiate hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Ulker Kilic‐Huck
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Pierre A. Geoffroy
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- Département de psychiatrie et d'addictologie, AP‐HP, GHU Paris Nord, DMU NeurosciencesHopital Bichat‐Claude BernardParisFrance
- Université de Paris, NeuroDiderot, Inserm, FHU I2‐D2ParisFrance
| | - Tristan Bourcier
- Department of Ophthalmology & Gepromed, Education DepartmentStrasbourg University HospitalStrasbourgFrance
| | - Sophie Braun
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Henri Comtet
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Laurence Hugueny
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Marc Hebert
- Centre de Recherche CERVOCentre Intégré Universitaire de Santé et des Services Sociaux de la Capitale NationaleQuébecQuebecCanada
- Département d'Ophtalmologie et d'Oto‐Rhino‐Laryngologie‐Chirurgie Cervico‐Faciale, Faculté de MédecineUniversité LavalQuébecQuebecCanada
| | - Eve Reynaud
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212 & Strasbourg UniversityStrasbourgFrance
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders CenterStrasbourg University HospitalStrasbourgFrance
| |
Collapse
|
3
|
Maruani J, Vissouze L, Hebert M, Rach H, Zehani F, Lejoyeux M, Bourgin P, Geoffroy PA. Pupillary response to blue light as a biomarker of seasonal pattern in Major Depressive Episode: A clinical study using pupillometry. Psychiatry Res 2025; 344:116333. [PMID: 39721100 DOI: 10.1016/j.psychres.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Depressive disorders are characterized by disturbances in light signal processing. More specifically, an alteration of the melanopsin response is suggested. The post-illumination pupillary response (PIPR) to blue light (post-blue PIPR) is increasingly used as a marker of the activity of intrinsically photosensitive melanopsin ganglion cells (ipRGCs). We hypothesized that individuals with Major Depressive Episode (MDE) who exhibited a higher vulnerability to season patterns showed a decreased ability to transmit light signals to the brain. We explored the correlation between the post-blue PIPR and the Global Seasonality Score (GSS) in 21 patients with MDE. The GSS was assessed using the Seasonal Pattern Assessment Questionnaire (SPAQ). The results revealed that decreased relative and absolute post-blue PIPR, suggesting a melanopsinergic hyposensitivity, were associated independently and significantly with higher seasonality in the psychological factor including a greater seasonal variation in sleep duration, mood, energy level and social activity, but were not associated with higher seasonality in the dietary factor (including weight and appetite seasonal variations) or with the severity of anxiety, depression, or sleep disturbances. Interestingly, mediation analyses highlight independent bidirectional effects of high vulnerability to season of psychological factors and decreased ipRGC sensitivity. Post-blue PIPR could be an objective marker of seasonal changes in daylight exposure in patients with MDE. Further research could explore post-blue PIPR as a state or trait biomarker for depressive disorders and the seasonal pattern, and its potential role in predicting therapeutic response to light therapy.
Collapse
Affiliation(s)
- Julia Maruani
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France.
| | - Lily Vissouze
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Marc Hebert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Québec, QC, Canada b Department of Ophthalmology and Otorhinolaryngology - _Head and Neck Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Heloise Rach
- GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Feriel Zehani
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Michel Lejoyeux
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France
| | - Patrice Bourgin
- Sleep Disorders Center - CIRCSom (International Research Center for ChronoSomnology), University Hospital of Strasbourg 1, place de l'hôpital, 67000 Strasbourg France; CNRS UPR 3212 & Strasbourg University, Institute for Cellular and Integrative Neurosciences, F-67000, Strasbourg, France
| | - Pierre A Geoffroy
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France; CNRS UPR 3212 & Strasbourg University, Institute for Cellular and Integrative Neurosciences, F-67000, Strasbourg, France.
| |
Collapse
|
4
|
Wescott DL, Hasler BP, Franzen PL, Taylor ML, Klevens AM, Gamlin P, Siegle GJ, Roecklein KA. Circadian photoentrainment varies by season and depressed state: associations between light sensitivity and sleep and circadian timing. Sleep 2024; 47:zsae066. [PMID: 38530635 PMCID: PMC11168757 DOI: 10.1093/sleep/zsae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
STUDY OBJECTIVES Altered light sensitivity may be an underlying vulnerability for disrupted circadian photoentrainment. The photic information necessary for circadian photoentrainment is sent to the circadian clock from melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs). The current study tested whether the responsivity of ipRGCs measured using the post-illumination pupil response (PIPR) was associated with circadian phase, sleep timing, and circadian alignment, and if these relationships varied by season or depression severity. METHODS Adult participants (N = 323, agem = 40.5, agesd = 13.5) with varying depression severity were recruited during the summer (n = 154) and winter (n = 169) months. Light sensitivity was measured using the PIPR. Circadian phase was assessed using Dim Light Melatonin Onset (DLMO) on Friday evenings. Midsleep was measured using actigraphy. Circadian alignment was calculated as the DLMO-midsleep phase angle. Multilevel regression models covaried for age, gender, and time since wake of PIPR assessment. RESULTS Greater light sensitivity was associated with later circadian phase in summer but not in winter (β = 0.23; p = 0.03). Greater light sensitivity was associated with shorter DLMO-midsleep phase angles (β = 0.20; p = 0.03) in minimal depression but not in moderate depression (SIGHSAD < 6.6; Johnson-Neyman region of significance). CONCLUSIONS Light sensitivity measured by the PIPR was associated with circadian phase during the summer but not in winter, suggesting ipRGC functioning in humans may affect circadian entrainment when external zeitgebers are robust. Light sensitivity was associated with circadian alignment only in participants with minimal depression, suggesting circadian photoentrainment, a possible driver of mood, may be decreased in depression year-round, similar to decreased photoentrainment in winter.
Collapse
Affiliation(s)
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter L Franzen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maddison L Taylor
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison M Klevens
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
5
|
Abstract
Idiopathic hypersomnia (IH) and Kleine-Levin syndrome (KLS) are rare disorders of central hypersomnolence of unknown cause, affecting young people. However, increased sleep time and excessive daytime sleepiness (EDS) occur daily for years in IH, whereas they occur as relapsing/remitting episodes associated with cognitive and behavioural disturbances in KLS. Idiopathic hypersomnia is characterized by EDS, prolonged, unrefreshing sleep at night and during naps, and frequent morning sleep inertia, but rare sleep attacks, no cataplexy and sleep onset in REM periods as in narcolepsy. The diagnosis requires: (i) ruling out common causes of hypersomnolence, including mostly sleep apnea, insufficient sleep syndrome, psychiatric hypersomnia and narcolepsy; and (ii) obtaining objective EDS measures (mean latency at the multiple sleep latency test≤8min) or increased sleep time (sleep time>11h during a 18-24h bed rest). Treatment is similar to narcolepsy (except for preventive naps), including adapted work schedules, and off label use (after agreement from reference/competence centres) of modafinil, sodium oxybate, pitolisant, methylphenidate and solriamfetol. The diagnosis of KLS requires: (i) a reliable history of distinct episodes of one to several weeks; (ii) episodes contain severe hypersomnia (sleep>15h/d) associated with cognitive impairment (mental confusion and slowness, amnesia), derealisation, major apathy or disinhibited behaviour (hypersexuality, megaphagia, rudeness); and (iii) return to baseline sleep, cognition, behaviour and mood after episodes. EEG may contain slow rhythms during episodes, and rules out epilepsy. Functional brain imaging indicates hypoactivity of posterior associative cortex and hippocampus during symptomatic and asymptomatic periods. KLS attenuates with time when starting during teenage, including less frequent and less severe episodes. Adequate sleep habits, avoidance of alcohol and infections, as well as lithium and sometimes valproate (off label, after agreement from reference centres) help reducing the frequency and severity of episodes, and IV methylprednisolone helps reducing long (>30d) episode duration.
Collapse
Affiliation(s)
- I Arnulf
- Sorbonne Université, Paris, France; Centre de Référence des narcolepsies et hypersomnies rares, Service des pathologies du sommeil, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France; Institut du Cerveau (ICM), Paris Brain Institute, Paris, France.
| | - P Dodet
- Centre de Référence des narcolepsies et hypersomnies rares, Service des pathologies du sommeil, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France; Institut du Cerveau (ICM), Paris Brain Institute, Paris, France
| | - S Leu-Semenescu
- Centre de Référence des narcolepsies et hypersomnies rares, Service des pathologies du sommeil, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France; Institut du Cerveau (ICM), Paris Brain Institute, Paris, France
| | - J B Maranci
- Sorbonne Université, Paris, France; Centre de Référence des narcolepsies et hypersomnies rares, Service des pathologies du sommeil, Hôpital Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France; Institut du Cerveau (ICM), Paris Brain Institute, Paris, France
| |
Collapse
|