1
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, He D. G-Protein-Coupled Receptors in Rheumatoid Arthritis: Recent Insights into Mechanisms and Functional Roles. Front Immunol 2022; 13:907733. [PMID: 35874704 PMCID: PMC9304905 DOI: 10.3389/fimmu.2022.907733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint damage and even disability. Although there are various clinical therapies for RA, some patients still have poor or no response. Thus, the development of new drug targets remains a high priority. In this review, we discuss the role of G-protein-coupled receptors (GPCRs), including chemokine receptors, melanocortin receptors, lipid metabolism-related receptors, adenosine receptors, and other inflammation-related receptors, on mechanisms of RA, such as inflammation, lipid metabolism, angiogenesis, and bone destruction. Additionally, we summarize the latest clinical trials on GPCR targeting to provide a theoretical basis and guidance for the development of innovative GPCR-based clinical drugs for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
2
|
Page KM, McCormack JJ, Lopes-da-Silva M, Patella F, Harrison-Lavoie K, Burden JJ, Quah YYB, Scaglioni D, Ferraro F, Cutler DF. Structure modeling hints at a granular organization of the Golgi ribbon. BMC Biol 2022; 20:111. [PMID: 35549945 PMCID: PMC9102599 DOI: 10.1186/s12915-022-01305-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this "ribbon" architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses" whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis. RESULTS WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a "breathing" arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions. CONCLUSIONS Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.
Collapse
Affiliation(s)
- Karen M. Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT UK
| | - Jessica J. McCormack
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Mafalda Lopes-da-Silva
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: iNOVA4Health, CEDOC-Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Francesca Patella
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
- Current address: Kinomica, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG UK
| | - Kimberly Harrison-Lavoie
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Jemima J. Burden
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Ying-Yi Bernadette Quah
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Dominic Scaglioni
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - Francesco Ferraro
- Department of Biology and Evolution of Marine Organisms, BEOM, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Daniel F. Cutler
- MRC Laboratory for Molecular cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
3
|
Kuai J, Han C, Wei W. Potential Regulatory Roles of GRK2 in Endothelial Cell Activity and Pathological Angiogenesis. Front Immunol 2021; 12:698424. [PMID: 34335610 PMCID: PMC8320431 DOI: 10.3389/fimmu.2021.698424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) is an integrative node in many signaling network cascades. Emerging evidence indicates that GRK2 can interact with a large number of GPCRs and non-GPCR substrates in both kinase-dependent and -independent modes. Some of these pathways are associated with endothelial cell (EC) activity. The active state of ECs is a pivotal factor in angiogenesis. The occurrence and development of some inflammation-related diseases are accompanied by pathological angiogenesis, but there remains a lack of effective targeted treatments. Alterations in the expression and/or localization of GRK2 have been identified in several types of diseases and have been demonstrated to regulate the angiogenesis process in these diseases. GRK2 as a target may be a promising candidate for anti-angiogenesis therapy.
Collapse
Affiliation(s)
| | | | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Ferraro F, Patella F, Costa JR, Ketteler R, Kriston‐Vizi J, Cutler DF. Modulation of endothelial organelle size as an antithrombotic strategy. J Thromb Haemost 2020; 18:3296-3308. [PMID: 32881285 PMCID: PMC8436738 DOI: 10.1111/jth.15084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is long established that von Willebrand factor (VWF) is central to hemostasis and thrombosis. Endothelial VWF is stored in cell-specific secretory granules, Weibel-Palade bodies (WPBs), organelles generated in a wide range of lengths (0.5-5.0 µm). WPB size responds to physiological cues and pharmacological treatment, and VWF secretion from shortened WPBs dramatically reduces platelet and plasma VWF adhesion to an endothelial surface. OBJECTIVE We hypothesized that WPB-shortening represented a novel target for antithrombotic therapy. Our objective was to determine whether compounds exhibiting this activity do exist. METHODS Using a microscopy approach coupled to automated image analysis, we measured the size of WPB bodies in primary human endothelial cells treated with licensed compounds for 24 hours. RESULTS AND CONCLUSIONS A novel approach to identification of antithrombotic compounds generated a significant number of candidates with the ability to shorten WPBs. In vitro assays of two selected compounds confirm that they inhibit the pro-hemostatic activity of secreted VWF. This set of compounds acting at a very early stage of the hemostatic process could well prove to be a useful adjunct to current antithrombotic therapeutics. Further, in the current SARS-CoV-2 pandemic, with a considerable fraction of critically ill COVID-19 patients affected by hypercoagulability, these WPB size-reducing drugs might also provide welcome therapeutic leads for frontline clinicians and researchers.
Collapse
Affiliation(s)
- Francesco Ferraro
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Department of Biology and Evolution of Marine Organisms (BEOM)Stazione Zoologica Anton DohrnVilla ComunaleNaplesItaly
| | - Francesca Patella
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Joana R. Costa
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
- Present address:
Leukaemia Biology Research GroupDepartment of Haematology, Cancer InstituteUniversity College LondonLondonUK
| | - Robin Ketteler
- Cell Signalling and Autophagy GroupMRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Janos Kriston‐Vizi
- Bioinformatics Image Core (BIONIC)MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Daniel F. Cutler
- Endothelial Cell Biology Group, MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| |
Collapse
|
5
|
Patella F, Cutler DF. RGS4 controls secretion of von Willebrand factor to the subendothelial matrix. J Cell Sci 2020; 133:jcs247312. [PMID: 32576664 DOI: 10.1242/jcs.247312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
The haemostatic protein von Willebrand factor (VWF) exists in plasma and subendothelial pools. The plasma pools are secreted from endothelial storage granules, Weibel-Palade bodies (WPBs), by basal secretion with a contribution from agonist-stimulated secretion, and the subendothelial pool is secreted into the subendothelial matrix by a constitutive pathway not involving WPBs. We set out to determine whether the constitutive release of subendothelial VWF is actually regulated and, if so, what functional consequences this might have. Constitutive VWF secretion can be increased by a range of factors, including changes in VWF expression, levels of TNF and other environmental cues. An RNA-seq analysis revealed that expression of regulator of G protein signalling 4 (RGS4) was reduced in endothelial cells (HUVECs) grown under these conditions. siRNA RGS4 treatment of HUVECs increased constitutive basolateral secretion of VWF, probably by affecting the anterograde secretory pathway. In a simple model of endothelial damage, we show that RGS4-silenced cells increased platelet recruitment onto the subendothelial matrix under flow. These results show that changes in RGS4 expression alter levels of subendothelial VWF, affecting platelet recruitment. This introduces a novel control over VWF function.
Collapse
Affiliation(s)
- Francesca Patella
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Daniel F Cutler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
CP-25 inhibits PGE2-induced angiogenesis by down-regulating EP4/AC/cAMP/PKA-mediated GRK2 translocation. Clin Sci (Lond) 2020; 134:331-347. [PMID: 31967309 DOI: 10.1042/cs20191032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptor kinase 2 (GRK2), a type of cytosolic enzyme, transiently translocates to the plasma membrane upon G protein-coupled receptors (GPCRs) activation, and it also binds to extracellular signal-regulated kinase (ERK) to inhibit the activation of ERK. GRK2 deficiency in endothelial cells (ECs) leads to increased pro-inflammatory signaling and promotes recruitment of leukocytes to activated ECs. However, the role of GRK2 in regulating angiogenesis remains unclear. Here, we show that GRK2 is a novel regulatory molecule on migration and tube formation of ECs, vessel sprouting ex vivo and angiogenesis in vivo. We identify that EP4/AC/cAMP/protein kinase A (PKA)-mediated GRK2 translocation to cells membrane decreases the binding of GRK2 and ERK1/2 to inhibit ERK1/2 activation, which promotes prostaglandin E2 (PGE2)-induced angiogenesis. GRK2 small interfering RNA (siRNA) inhibits the increase in PGE2-induced HUVECs migration and tube formation. In vivo, PGE2 increases ECs sprouting from normal murine aortic segments and angiogenesis in mice, but not from GRK2-deficient ones, on Matrigel. Further research found that Lys220 and Ser685 of GRK2 play an important role in angiogenesis by regulating GRK2 translocation. Paeoniflorin-6'-O-benzene sulfonate (CP-25), as a novel ester derivative of paeoniflorin (pae), has therapeutic potential for the treatment of adjuvant arthritis (AA) and collagen-induced arthritis (CIA), but the underlying mechanism of CP-25 on angiogenesis has not been elucidated. In our study, CP-25 inhibits the migration and tube formation of HUVECs, and angiogenesis in mice by down-regulating GRK2 translocation activation without affecting GRK2 total expression. Taken together, the present results revealed that CP-25 down-regulates EP4/AC/cAMP/PKA-mediated GRK2 translocation, restoring the inhibition of GRK2 for ERK1/2, thereby inhibiting PGE2-stimulated angiogenesis.
Collapse
|
7
|
Ketteler R, Freeman J, Ferraro F, Bata N, Cutler DF, Kriston-Vizi J, Stevenson N. Image-based siRNA screen to identify kinases regulating Weibel-Palade body size control using electroporation. Sci Data 2017; 4:170022. [PMID: 28248923 PMCID: PMC5332014 DOI: 10.1038/sdata.2017.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
High-content screening of kinase inhibitors is important in order to identify biogenesis and function mechanisms of subcellular organelles. Here, we present a human kinome siRNA high-content screen on primary human umbilical vein endothelial cells, that were transfected by electroporation. The data descriptor contains a confocal fluorescence, microscopic image dataset. We also describe an open source, automated image analysis workflow that can be reused to perform high-content analysis of other organelles. This dataset is suitable for analysis of morphological parameters that are linked to human umbilical vein endothelial cell (HUVEC) biology.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jamie Freeman
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicole Bata
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Dan F. Cutler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK,
J.K.-V. ()
| | - Nicola Stevenson
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
9
|
Taguchi K, Matsumoto T, Kobayashi T. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms. J Smooth Muscle Res 2015; 51:37-49. [PMID: 26447102 PMCID: PMC5137304 DOI: 10.1540/jsmr.51.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.
Collapse
Affiliation(s)
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry,
Hoshi University, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry,
Hoshi University, Tokyo, Japan
| |
Collapse
|
10
|
Trafficking GRK2: Cellular and Metabolic consequences of GRK2 subcellular localization. Transl Med UniSa 2014; 10:3-7. [PMID: 25147759 PMCID: PMC4140422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
G protein coupled receptor kinase 2 (GRK2) has a key role in cellular function by regulating different intracellular mechanisms in a kinase dependent or independent manner. In this review we have dealt with the recently discovered roles of GRK2 in the regulation of cell metabolism. In particular, we have focused on recent findings about the mitochondrial role of GRK2 in the regulation of energy metabolism. Few findings exist about this topic that all concur to identify a mitochondrial localization of GRK2, leading to the rising of the following question: is GRK2 detrimental or advantageous for mitochondrial function? By the review of available literature, a new concept arises about GRK2 role into the cell,which is that of a stress protein acutely activated by cellular stress whose specific subcellular localization, in particular mitochondrial localization, results in compensatory metabolic responses. Thus, the possibility to regulate GRK2 trafficking within the cell is a promising strategy to regulate the adaptative effects of the kinase on cell metabolism.
Collapse
|