1
|
Torii T, Miyamoto Y, Yamauchi J. Myelination by signaling through Arf guanine nucleotide exchange factor. J Neurochem 2024; 168:2201-2213. [PMID: 38894552 DOI: 10.1111/jnc.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
During myelination, large quantities of proteins are synthesized and transported from the endoplasmic reticulum (ER)-trans-Golgi network (TGN) to their appropriate locations within the intracellular region and/or plasma membrane. It is widely believed that oligodendrocytes uptake neuronal signals from neurons to regulate the endocytosis- and exocytosis-mediated intracellular trafficking of major myelin proteins such as myelin-associated glycoprotein (MAG) and proteolipid protein 1 (PLP1). The small GTPases of the adenosine diphosphate (ADP) ribosylation factor (Arf) family constitute a large group of signal transduction molecules that act as regulators for intracellular signaling, vesicle sorting, or membrane trafficking in cells. Studies on mice deficient in Schwann cell-specific Arfs-related genes have revealed abnormal myelination formation in peripheral nerves, indicating that Arfs-mediated signaling transduction is required for myelination in Schwann cells. However, the complex roles in these events remain poorly understood. This review aims to provide an update on signal transduction, focusing on Arf and its activator ArfGEF (guanine nucleotide exchange factor for Arf) in oligodendrocytes and Schwann cells. Future studies are expected to provide important information regarding the cellular and physiological processes underlying the myelination of oligodendrocytes and Schwann cells and their function in modulating neural activity.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
3
|
Comer SP. Turning Platelets Off and On: Role of RhoGAPs and RhoGEFs in Platelet Activity. Front Cardiovasc Med 2022; 8:820945. [PMID: 35071371 PMCID: PMC8770426 DOI: 10.3389/fcvm.2021.820945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.
Collapse
Affiliation(s)
- Shane P Comer
- ConwaySPHERE Research Group, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Ito H, Morishita R, Noda M, Ishiguro T, Nishikawa M, Nagata KI. The synaptic scaffolding protein CNKSR2 interacts with CYTH2 to mediate hippocampal granule cell development. J Biol Chem 2021; 297:101427. [PMID: 34800437 DOI: 10.1016/j.jbc.2021.101427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Tomoki Ishiguro
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
| |
Collapse
|
5
|
S100A6, Calumenin and Cytohesin 2 as Biomarkers for Cutaneous Involvement in Systemic Sclerosis Patients: A Case Control Study. J Pers Med 2021; 11:jpm11050368. [PMID: 34063287 PMCID: PMC8147492 DOI: 10.3390/jpm11050368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Systemic sclerosis (Ssc) is an autoimmune disease with incomplete known physiopathology. There is a high number of candidate proteomic biomarkers for Ssc that have not yet been confirmed on independent Ssc cohorts. The aim of the study was to confirm circulating S100A6, calumenin, and cytohesin 2 as biomarkers for Ssc. METHODS 53 Ssc patients and 26 age- and gender-matched controls were included. Serum S100A6, calumenin, and cytohesin 2 were evaluated with commercial ELISA kits. Associations between serum expression and clinical Ssc characteristics were evaluated. RESULTS Serum calumenin, S100A6, and cytohesin 2 were higher in Ssc patients compared to controls. Calumenin associated with extensive cutaneous fibrosis, frequency of Raynaud phenomenon, and low complement level, and had a tendency to be higher in Ssc patients with pulmonary fibrosis. S100A6 correlated with the number of active digital ulcers. Serum cytohesin 2 levels were higher in patients with teleangiectasia and associated with pulmonary artery pressure. CONCLUSIONS Serum calumenin, S100A6, and cytohesin 2 were confirmed as biomarkers on an independent group of Ssc patients. Calumenin had the best predictive capacity for cutaneous Ssc manifestations. Future studies are needed to evaluate the prognostic value of these biomarkers and evaluate them as possible therapeutic targets.
Collapse
|
6
|
Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice. Blood Adv 2019; 2:3627-3636. [PMID: 30573565 DOI: 10.1182/bloodadvances.2018023291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/21/2018] [Indexed: 01/22/2023] Open
Abstract
Platelet secretion is central to physiological and pathophysiological platelet function. SNAP23 has long been implicated as being a principal SNARE protein regulating platelet granule secretion, although this has not been definitively demonstrated in genetic models. Here, using a platelet-specific conditional SNAP23 knockout mouse, we show that absence of SNAP23 results in complete ablation of dense granule, α granule, and lysosomal secretion. Measured granule cargo content and granule numbers were normal, suggesting SNAP23 regulates fusion of granules with the extracellular membrane, rather than granule loading or formation. A macrothrombocytopenia was also observed, which, combined with ablation of secretion, resulted in a pronounced bleeding defect in a tail bleed assay and almost complete ablation of arterial and venous thrombosis. The macrothrombocytopenia was not due to reduced megakaryopoiesis but instead likely was due to the increased loss of platelets through bleeding, consistent with an increase in platelet total RNA content indicating a greater number of reticulated platelets. The data definitively show SNAP23 to be critical for granule release of any kind from platelets, irrespective of stimulus, and this is the first single gene to be shown to be universally essential for exocytosis in platelets.
Collapse
|
7
|
Abstract
Our understanding of fundamental biological processes within platelets is continually evolving. A critical feature of platelet biology relates to the intricate uptake, packaging and release of bioactive cargo from storage vesicles, essential in mediating a range of classical (haemostasis/thrombosis) and non-classical (regeneration/inflammation/metastasis) roles platelets assume. Pivotal to the molecular control of these vesicle trafficking events are the small GTPases of the Ras superfamily, which function as spatially distinct, molecular switches controlling essential cellular processes. Herein, we specifically focus on members of the Rab, Arf and Ras subfamilies, which comprise over 130 members and platelet proteomic datasets suggest that more than half of these are expressed in human platelets. We provide an update of current literature relating to trafficking roles for these GTPases in platelets, particularly regarding endocytic and exocytic events, but also vesicle biogenesis and provide speculative argument for roles that other related GTPases and regulatory proteins may adopt in platelets. Advances in our understanding of small GTPase function in the anucleate platelet has been hampered by the lack of specific molecular tools, but it is anticipated that this will be greatly accelerated in the years ahead and will be crucial to the identification of novel therapeutic targets controlling different platelet processes.
Collapse
Affiliation(s)
- Tony G Walsh
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Yong Li
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Andreas Wersäll
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| | - Alastair W Poole
- a From the School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building , University of Bristol , Bristol , UK
| |
Collapse
|
8
|
Nagy Z, Smolenski A. Cyclic nucleotide-dependent inhibitory signaling interweaves with activating pathways to determine platelet responses. Res Pract Thromb Haemost 2018; 2:558-571. [PMID: 30046761 PMCID: PMC6046581 DOI: 10.1002/rth2.12122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Platelets are regulated by extracellular cues that impact on intracellular signaling. The endothelium releases prostacyclin and nitric oxide which stimulate the synthesis of cyclic nucleotides cAMP and cGMP leading to platelet inhibition. Other inhibitory mechanisms involve immunoreceptor tyrosine-based inhibition motif-containing receptors, intracellular receptors and receptor desensitization. Inhibitory cyclic nucleotide pathways are traditionally thought to represent a passive background system keeping platelets in a quiescent state. In contrast, cyclic nucleotides are increasingly seen to be dynamically involved in most aspects of platelet regulation. This review focuses on crosstalk between activating and cyclic nucleotide-mediated inhibitory pathways highlighting emerging new hub structures and signaling mechanisms. In particular, interactions of plasma membrane receptors like P2Y12 and GPIb/IX/V with the cyclic nucleotide system are described. Furthermore, differential regulation of the RGS18 complex, second messengers, protein kinases, and phosphatases are presented, and control over small G-proteins by guanine-nucleotide exchange factors and GTPase-activating proteins are outlined. Possible clinical implications of signaling crosstalk are discussed.
Collapse
Affiliation(s)
- Zoltan Nagy
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Albert Smolenski
- UCD School of MedicineUniversity College DublinDublinIreland
- UCD Conway InstituteUniversity College DublinDublinIreland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
9
|
Anquetil T, Payrastre B, Gratacap MP, Viaud J. The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis. Cancer Metastasis Rev 2018; 37:477-489. [DOI: 10.1007/s10555-018-9735-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
11
|
In-depth PtdIns(3,4,5)P 3 signalosome analysis identifies DAPP1 as a negative regulator of GPVI-driven platelet function. Blood Adv 2017; 1:918-932. [PMID: 29242851 DOI: 10.1182/bloodadvances.2017005173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) isoforms play important roles in platelet priming, activation, and stable thrombus formation. Class I PI3Ks predominantly regulate cell function through their catalytic product, the signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], which coordinates the localization and/or activity of a diverse range of binding proteins. Notably, the complete repertoire of these class I PI3K effectors in platelets remains unknown, limiting mechanistic understanding of class I PI3K-mediated control of platelet function. We measured robust agonist-driven PtdIns (3,4,5)P3 generation in human platelets by lipidomic mass spectrometry (MS), and then used affinity-capture coupled to high-resolution proteomic MS to identify the targets of PtdIns (3,4,5)P3 in these cells. We reveal for the first time a diverse platelet PtdIns(3,4,5)P3 interactome, including kinases, signaling adaptors, and regulators of small GTPases, many of which are previously uncharacterized in this cell type. Of these, we show dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1) to be regulated by Src-family kinases and PI3K, while platelets from DAPP1-deficient mice display enhanced thrombus formation on collagen in vitro. This was associated with enhanced platelet α/δ granule secretion and αIIbβ3 integrin activation downstream of the collagen receptor glycoprotein VI. Thus, we present the first comprehensive analysis of the PtdIns(3,4,5)P3 signalosome of human platelets and identify DAPP1 as a novel negative regulator of platelet function. This work provides important new insights into how class I PI3Ks shape platelet function.
Collapse
|
12
|
Izquierdo I, García Á. Platelet proteomics applied to the search for novel antiplatelet therapeutic targets. Expert Rev Proteomics 2016; 13:993-1006. [DOI: 10.1080/14789450.2016.1246188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Nagy Z, Wynne K, von Kriegsheim A, Gambaryan S, Smolenski A. Cyclic Nucleotide-dependent Protein Kinases Target ARHGAP17 and ARHGEF6 Complexes in Platelets. J Biol Chem 2015; 290:29974-83. [PMID: 26507661 DOI: 10.1074/jbc.m115.678003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells release prostacyclin (PGI2) and nitric oxide (NO) to inhibit platelet functions. PGI2 and NO effects are mediated by cyclic nucleotides, cAMP- and cGMP-dependent protein kinases (PKA, PKG), and largely unknown PKA and PKG substrate proteins. The small G-protein Rac1 plays a key role in platelets and was suggested to be a target of cyclic nucleotide signaling. We confirm that PKA and PKG activation reduces Rac1-GTP levels. Screening for potential mediators of this effect resulted in the identification of the Rac1-specific GTPase-activating protein ARHGAP17 and the guanine nucleotide exchange factor ARHGEF6 as new PKA and PKG substrates in platelets. We mapped the PKA/PKG phosphorylation sites to serine 702 on ARHGAP17 using Phos-tag gels and to serine 684 on ARHGEF6. We show that ARHGAP17 binds to the actin-regulating CIP4 protein in platelets and that Ser-702 phosphorylation interferes with this interaction. Reduced CIP4 binding results in enhanced inhibition of cell migration by ARHGAP17. Furthermore, we show that ARHGEF6 is constitutively linked to GIT1, a GAP of Arf family small G proteins, and that ARHGEF6 phosphorylation enables binding of the 14-3-3 adaptor protein to the ARHGEF6/GIT1 complex. PKA and PKG induced rearrangement of ARHGAP17- and ARHGEF6-associated protein complexes might contribute to Rac1 regulation and platelet inhibition.
Collapse
Affiliation(s)
- Zoltan Nagy
- From the UCD Conway Institute and the School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Mass Spectrometry Resource, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Prospect, St. Petersburg, 194223 Russia
| | - Albert Smolenski
- From the UCD Conway Institute and the School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland,
| |
Collapse
|
14
|
Golebiewska EM, Harper MT, Williams CM, Savage JS, Goggs R, Fischer von Mollard G, Poole AW. Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem 2014; 290:1536-45. [PMID: 25404741 PMCID: PMC4340400 DOI: 10.1074/jbc.m114.602615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Platelet secretion not only drives thrombosis and hemostasis, but also mediates a variety of other physiological and pathological processes. The ubiquitous SNARE machinery and a number of accessory proteins have been implicated in regulating secretion in platelet. Although several platelet SNAREs have been identified, further members of the SNARE family may be needed to fine-tune platelet secretion. In this study we identified expression of the t-SNARE syntaxin 8 (STX8) (Qc SNARE) in mouse and human platelets. In mouse studies, whereas STX8 was not essential for α-granule or lysosome secretion, Stx8−/− platelets showed a significant defect in dense granule secretion in response to thrombin and CRP. This was most pronounced at intermediate concentrations of agonists. They also showed an aggregation defect that could be rescued with exogenous ADP and increased embolization in Stx8−/− mice in vivo consistent with an important autocrine and paracrine role for ADP in aggregation and thrombus stabilization. STX8 therefore specifically contributes to dense granule secretion and represents another member of a growing family of genes that play distinct roles in regulating granule release from platelets and thus platelet function in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Goggs
- the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | | | - Alastair W Poole
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom,
| |
Collapse
|
15
|
Torii T, Miyamoto Y, Tago K, Sango K, Nakamura K, Sanbe A, Tanoue A, Yamauchi J. Arf6 guanine nucleotide exchange factor cytohesin-2 binds to CCDC120 and is transported along neurites to mediate neurite growth. J Biol Chem 2014; 289:33887-903. [PMID: 25326380 DOI: 10.1074/jbc.m114.575787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth.
Collapse
Affiliation(s)
- Tomohiro Torii
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535,
| | - Yuki Miyamoto
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Kenji Tago
- the Graduate School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Kazunori Sango
- the Amyotrophic Lateral Sclerosis/Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506
| | - Kazuaki Nakamura
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Atsushi Sanbe
- the School of Pharmacy, Iwate Medical University, Morioka, Iwate 020-0023, and
| | - Akito Tanoue
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535
| | - Junji Yamauchi
- From the Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, the Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| |
Collapse
|