1
|
Chi J, Wang Q, Wang Z, Zeng W, Gao Y, Li X, Wang W, Wang J, Qu M. S100 calcium-binding protein A8 exacerbates deep vein thrombosis in vascular endothelial cells. Sci Rep 2025; 15:831. [PMID: 39755911 PMCID: PMC11700128 DOI: 10.1038/s41598-025-85322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025] Open
Abstract
Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls. The fluctuation and association for S100A8 and interleukin-1 beta (IL-1β) in the specimens was assessed using enzyme-linked immunosorbent assay. We also used the human recombinant protein S100A8 to activate human umbilical vein endothelial cells and created a rat model to explore the possible relationship between them. Studies have shown that the infiltration of S100A8 sustains local inflammation and thrombus formation, which may exacerbate DVT by amplifying NLRP3/Caspase-1/IL-1β signals in the vascular endothelial cells.
Collapse
Affiliation(s)
- Junyu Chi
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qitao Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhen Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wenjie Zeng
- Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Yangyang Gao
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Xin Li
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wanpeng Wang
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Jiali Wang
- Graduate School of Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ming Qu
- Vascular Gland Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
2
|
Zhang H, Diao X, Jiang T, Wei M, Su Y, Shen J, Bao C, Wu W. Novel Deep Sea Isoindole Alkaloid FGFC1 Exhibits Its Fibrinolytic Effects by Inhibiting Thrombin-Activatable Fibrinolysis Inhibitor. Pharmaceuticals (Basel) 2024; 17:1401. [PMID: 39459040 PMCID: PMC11510285 DOI: 10.3390/ph17101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The thrombin-activatable fibrinolysis inhibitor (TAFI) is an important regulator in the balance between blood clot formation (coagulation) and dissolution (fibrinolysis), which is mainly activated by thrombin bonded with thrombomodulin (TM). METHODS In this study, the investigation focused on the unique target TAFI of fungi fibrinolytic compound 1 (FGFC1), a novel fibrinolytic compound sourced from the deep sea. In this sense, the regulation of TAFI by FGFC1, in comparison to established TAFI inhibitors such as DS-1040 and PCTI in hPPP, was investigated, which was validated through the molecular docking of FGFC1 to TAFI. The inhibitory effect of FGFC1 on TAFI-mediating coagulation (ex vivo and in vitro) and its fibrinolytic effect (ex vivo) were investigated in hPPP and hCMEC/D3 cells, respectively, followed by SEM. RESULTS FGFC1 solutions ranging from 0.023 to 0.736 mM effectively inhibited TAFI activation. Notably, the 0.023 mM concentration demonstrated significant suppression, comparable to DS-1040 and PCTI. These inhibitory effects of FGFC1 (0.023-0.368 mM) were further validated through the enhancement in TAFI (TAFIa) activation by fibrins in the coagulum prior to proteolysis, resulting in the cleavage of TAFIa from 33 kDa to 28 kDa. Furthermore, these regulatory effects of FGFC1 on TAFI were demonstrated to have minimal association with TM-mediated control, as confirmed through a molecular docking analysis. FGFC1 (0.023-0.092 mM) was suggested to have obstructive effects on TAFI-mediated coagulation in the hPPP, which was demonstrated by the inhibition of clot aggregation, protein crystallization, and platelet anchoring, as observed through SEM. Simultaneously, FGFC1 (0.023 to 0.368 mM) significantly enhanced TAFI-mediated fibrinolysis, which was also supported by increased levels of t-PA, u-PA, and plasmin. CONCLUSIONS From the above findings, FGFC1 is identified as a novel dual-target bioactive compound participating in blood formation/dissolution that demonstrates anti-coagulation and fibrinolytic effects by regulating TAFI activation, inhibiting TAFIa-fibrin combination, and initiating proteolysis. It also provided convincing evidence that TAFI plays a critical role in thrombolysis as a molecular link between coagulation and fibrinolysis. Furthermore, the application of FGFC1 was indicated as a potential therapeutic strategy in thromboembolic and hemorrhagic diseases.
Collapse
Affiliation(s)
- Haixing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
| | - Xiaozhen Diao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhoushan 316000, China
| | - Tingting Jiang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
| | - Mingjun Wei
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
| | - Yue Su
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
| | - Jingjing Shen
- Analytical & Measuring Instruments Division Shimadzu (China) Co., Ltd., Shanghai Branch, Shanghai 200120, China;
| | - Chunlin Bao
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201306, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (H.Z.); (X.D.); (T.J.); (M.W.); (Y.S.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
| |
Collapse
|
3
|
Giri H, Biswas I, Rezaie AR. Thrombomodulin: a multifunctional receptor modulating the endothelial quiescence. J Thromb Haemost 2024; 22:905-914. [PMID: 38266676 PMCID: PMC10960680 DOI: 10.1016/j.jtha.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Thrombomodulin (TM) is a type 1 receptor best known for its function as an anticoagulant cofactor for thrombin activation of protein C on the surface of vascular endothelial cells. In addition to its anticoagulant cofactor function, TM also regulates fibrinolysis, complement, and inflammatory pathways. TM is a multidomain receptor protein with a lectin-like domain at its N-terminus that has been shown to exhibit direct anti-inflammatory functions. This domain is followed by 6 epidermal growth factor-like domains that support the interaction of TM with thrombin. The interaction inhibits the procoagulant function of thrombin and enables the protease to regulate the anticoagulant and fibrinolytic pathways by activating protein C and thrombin-activatable fibrinolysis inhibitor. TM has a Thr/Ser-rich region immediately above the membrane surface that harbors chondroitin sulfate glycosaminoglycans, and this region is followed by a single-spanning transmembrane and a C-terminal cytoplasmic domain. The structure and physiological function of the extracellular domains of TM have been extensively studied, and numerous excellent review articles have been published. However, the physiological function of the cytoplasmic domain of TM has remained poorly understood. Recent data from our laboratory suggest that intracellular signaling by the cytoplasmic domain of TM plays key roles in maintaining quiescence by modulating phosphatase and tensin homolog signaling in endothelial cells. This article briefly reviews the structure and function of extracellular domains of TM and focuses on the mechanism and possible physiological importance of the cytoplasmic domain of TM in modulating phosphatase and tensin homolog signaling in endothelial cells.
Collapse
Affiliation(s)
- Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
4
|
Gruzdys V, Wang L, Wang D, Huang R, Sun XL. Investigation of cofactor activities of endothelial microparticle-thrombomodulin with liposomal surrogate. Biochem Biophys Res Commun 2023; 651:79-84. [PMID: 36801612 PMCID: PMC9992332 DOI: 10.1016/j.bbrc.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Thrombomodulin (TM) is a type I transmembrane glycoprotein mainly expressed on the endothelial cells, where it binds thrombin to form the thrombin-TM complex that can activate protein C and thrombin-activable fibrinolysis inhibitor (TAFI) and induce anticoagulant and anti-fibrinolytic reactions, respectively. Cell activation and injury often sheds microparticles that contain membrane TM, which circulate in biofluids like blood. However, the biological function of circulating microparticle-TM is still unknown even though it has been recognized as a biomarker of endothelial cell injury and damage. In comparison with cell membrane, different phospholipids are exposed on the microparticle surface due to cell membrane ''flip-flop'' upon cell activation and injury. Liposomes can be used as a microparticle mimetics. In this report, we prepared TM-containing liposomes with different phospholipids as surrogates of endothelial microparticle-TM and investigated their cofactor activities. We found that liposomal TM with phosphatidylethanolamine (PtEtn) showed increased protein C activation but decreased TAFI activation in comparison to liposomal TM with phosphatidylcholine (PtCho). In addition, we investigated whether protein C and TAFI compete for the thrombin/TM complex on the liposomes. We found that protein C and TAFI did not compete for the thrombin/TM complex on the liposomes with PtCho alone and with low concentration (5%) of PtEtn and phosphatidylserine (PtSer), but competed each other on the liposomes with higher concentration (10%) of PtEtn and PtSer. These results indicate that membrane lipids affect protein C and TAFI activation and microparticle-TM may have different cofactor activities in comparison to cell membrane TM.
Collapse
Affiliation(s)
- Valentinas Gruzdys
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Lin Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Rachel Huang
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
5
|
Zheng Z, Mukhametova L, Boffa MB, Moore EE, Wolberg AS, Urano T, Kim PY. Assays to quantify fibrinolysis: strengths and limitations. Communication from the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee on fibrinolysis. J Thromb Haemost 2023; 21:1043-1054. [PMID: 36759279 PMCID: PMC10109242 DOI: 10.1016/j.jtha.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Fibrinolysis is a series of enzymatic reactions that degrade insoluble fibrin. Plasminogen activators convert the zymogen plasminogen to the active serine protease plasmin, which cleaves and solubilizes crosslinked fibrin clots into fibrin degradation products. The quantity and quality of fibrinolytic enzymes, their respective inhibitors, and clot structure determine overall fibrinolysis. The quantity of protein can be measured by antigen-based assays, and both quantity and quality can be assessed using functional assays. Furthermore, variations of commonly used assays have been reported, which are tailored to address the role(s) of specific fibrinolytic factors and cellular elements (eg, platelets, neutrophils, and red blood cells). Although the concentration and/or activity of a protein can be quantified, how these individual components contribute to the overall fibrinolysis outcome can be challenging to determine. This difficulty is due to temporal changes within and around the thrombi during the clot breakdown, particularly the fibrin matrix structure, and composition. Furthermore, terms such as "fibrinolytic activity/potential," "plasminogen activation," and "plasmin activity" are often used interchangeably despite having different definitions. The purpose of this review is to 1) summarize the assays measuring fibrinolysis activity and potential, 2) facilitate the interpretation of data generated by these assays, and 3) summarize the strengths and limitations of these assays.
Collapse
Affiliation(s)
- Ze Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Liliya Mukhametova
- Chemical Enzymology Department, Chemistry Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Michael B Boffa
- Department of Biochemistry and Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine and Shizuoka Graduate University of Public Health, Hamamatsu, Japan
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Mochizuki L, Sano H, Honkura N, Masumoto K, Urano T, Suzuki Y. Visualization of Domain- and Concentration-Dependent Impact of Thrombomodulin on Differential Regulation of Coagulation and Fibrinolysis. Thromb Haemost 2022; 123:16-26. [PMID: 36307100 PMCID: PMC9831690 DOI: 10.1055/s-0042-1757407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Thrombomodulin (TM) functions as a dual modulator-anticoagulant and antifibrinolytic potential-by the thrombin-dependent activation of protein C and thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI cleaves the C-terminal lysine of partially degraded fibrin and inhibits both plasminogen binding and its activation on the fibrin surface. We have reported previously that activated platelets initiate fibrin network formation and trigger fibrinolysis after the accumulation of tissue-type plasminogen activator and plasminogen. OBJECTIVE To analyze the effects of domain-deletion variants of TM on coagulation and fibrinolysis at different concentrations. METHODS Domain-deletion variants of TM, such as D123 (all extracellular regions), E3456 (minimum domains for thrombin-dependent activation of protein C and TAFI), and E456 (minimum domains for that of protein C but not TAFI), were used at 0.25 to 125 nM for turbidimetric assay to determine the clotting time and clot lysis time and to visualize fibrin network formation and lysis in platelet-containing plasma. RESULTS AND CONCLUSIONS A low concentration of either D123 or E3456, but not of E456, prolonged clot lysis time, and delayed the accumulation of fluorescence-labeled plasminogen at the activated platelets/dense fibrin area due to effective TAFI activation. Conversely, only the highest concentrations of all three TM variants delayed the clotting time, though fibrin network formation in the vicinity of activated platelets was almost intact. TAFI activation might be affected by attenuation in thrombin activity after the clot formation phase. These findings suggest that the spatiotemporal balance between the anticoagulant and antifibrinolytic potential of TM is controlled in domain- and concentration-dependent manners.
Collapse
Affiliation(s)
- Liina Mochizuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Honkura
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan,Address for correspondence Yuko Suzuki, MD, PhD Department of Medical Physiology, Hamamatsu University School of Medicine1-20-1, Handa-yama, Higashi-ku, Hamamatsu, 431-3192Japan
| |
Collapse
|
7
|
van Moorsel MVA, Poolen GC, Koekman CA, Verhoef S, de Maat S, Barendrecht A, van Kleef ND, Meijers JCM, Schiffelers RM, Maas C, Urbanus RT. VhH anti-thrombomodulin clone 1 inhibits TAFI activation and enhances fibrinolysis in human whole blood under flow. J Thromb Haemost 2022; 20:1213-1222. [PMID: 35170225 PMCID: PMC9311061 DOI: 10.1111/jth.15674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thrombomodulin on endothelial cells can form a complex with thrombin. This complex has both anticoagulant properties, by activating protein C, and clot-protective properties, by activating thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI (TAFIa) inhibits plasmin-mediated fibrinolysis. OBJECTIVES TAFIa inhibition is considered a potential antithrombotic strategy. So far, this goal has been pursued by developing compounds that directly inhibit TAFIa. In contrast, we here describe variable domain of heavy-chain-only antibody (VhH) clone 1 that inhibits TAFI activation by targeting human thrombomodulin. METHODS Two llamas (Lama Glama) were immunized, and phage display was used to select VhH anti-thrombomodulin (TM) clone 1. Affinity was determined with surface plasmon resonance and binding to native TM was confirmed with flow cytometry. Clone 1 was functionally assessed by competition, clot lysis, and thrombin generation assays. Last, the effect of clone 1 on tPA-mediated fibrinolysis in human whole blood was investigated in a microfluidic fibrinolysis model. RESULTS VhH anti-TM clone 1 bound recombinant TM with a binding affinity of 1.7 ± 0.4 nM and showed binding to native TM. Clone 1 competed with thrombin for binding to TM and attenuated TAFI activation in clot lysis assays and protein C activation in thrombin generation experiments. In a microfluidic fibrinolysis model, inhibition of TM with clone 1 fully prevented TAFI activation. DISCUSSION We have developed VhH anti-TM clone 1, which inhibits TAFI activation and enhances tPA-mediated fibrinolysis under flow. Different from agents that directly target TAFIa, our strategy should preserve direct TAFI activation via thrombin.
Collapse
Affiliation(s)
- Marc V. A. van Moorsel
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Geke C. Poolen
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Benign HaematologyThrombosis and HaemostasisVan Creveldkliniek, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Cornelis A. Koekman
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Sandra Verhoef
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Steven de Maat
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Arjan Barendrecht
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nadine D. van Kleef
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular MedicineAmsterdam Cardiovascular Sciences, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Molecular HematologySanquin ResearchAmsterdamThe Netherlands
| | - Raymond M. Schiffelers
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Coen Maas
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Rolf T. Urbanus
- Central Diagnostic LaboratoryUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Center for Benign HaematologyThrombosis and HaemostasisVan Creveldkliniek, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
8
|
Mehic D, Tolios A, Hofer S, Ay C, Haslacher H, Downes K, Haimel M, Pabinger I, Gebhart J. Thrombomodulin in patients with mild to moderate bleeding tendency. Haemophilia 2021; 27:1028-1036. [PMID: 34628704 PMCID: PMC9293080 DOI: 10.1111/hae.14433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
Introduction A massive increase of soluble thrombomodulin (sTM) due to variants in the thrombomodulin gene (THBD) has recently been identified as a novel bleeding disorder. Aim To investigate sTM levels and underlying genetic variants as a cause for haemostatic impairment and bleeding in a large number of patients with a mild to moderate bleeding disorder (MBD), including patients with bleeding of unknown cause (BUC). Patients and methods In 507 MBD patients, sTM levels, thrombin generation and plasma clot formation were measured and compared to 90 age‐ and sex‐matched healthy controls. In patients, genetic analysis of the THBD gene was performed. Results No difference in sTM levels between patients and controls was found overall (median ([IQR] 5.0 [3.8‐6.3] vs. 5.1 [3.7‐6.4] ng/ml, p = .762), and according to specific diagnoses of MBD or BUC, and high sTM levels (≥95th percentile of healthy controls) were not overrepresented in patients. Soluble TM levels had no impact on bleeding severity or global tests of haemostasis, including thrombin generation or plasma clot formation. In the THBD gene, no known pathogenic or novel disease‐causing variants affecting sTM plasma levels were identified in our patient cohort. Conclusion TM‐associated coagulopathy appears to be rare, as it was not identified in our large cohort of patients with MBD. Soluble TM did not arise as a risk factor for bleeding or altered haemostasis in these patients.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alexander Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.,Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Institute for Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stefanie Hofer
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Kate Downes
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.,Cambridge Biomedical Campus, Cambridge University Hospitals Genomic Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthias Haimel
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Morrow GB, Beavis J, Harper S, Bignell P, Laffan MA, Curry N. Characterisation of a novel thrombomodulin c.1487delC,p.(Pro496Argfs*10) variant and evaluation of therapeutic strategies to manage the rare bleeding phenotype. Thromb Res 2020; 197:100-108. [PMID: 33190022 DOI: 10.1016/j.thromres.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION A novel variant in the thrombomodulin (TM) gene, c.1487delC,p.(Pro496Argfs*10), referred to as Pro496Argfs*10, was identified in a family with an unexplained bleeding disorder. The Pro496Argfs*10 variant results in loss of the transmembrane and intracellular segments of TM and is associated with an increase in soluble TM (sTM) in the plasma. The aim of this study was to characterise the effect of elevated sTM on thrombin generation (TG) and fibrinolysis, and to evaluate therapeutic strategies to manage the patients. METHODS Plasma samples were obtained from two patients carrying the variant. TG was triggered using 5 pM tissue factor and measured using the Calibrated Automated Thrombogram. A turbidity clot lysis assay was used to monitor fibrinolysis. TM antigen was quantified by ELISA. RESULTS Patients with the Pro496Argfs*10 variant had significantly elevated plasma sTM compared to controls (372.6 vs. 6.0 ng/ml). TG potential was significantly lower in patients but was restored by inhibition of activated protein C (APC) or addition of activated Factor VII (FVIIa) or platelet concentrates. In vitro experiments suggested that activated prothrombin complex concentrates (APCC) posed a risk of thrombosis. The time to 50% lysis was significantly prolonged in patients compared to controls, 69.7 vs. 42.3 min. Clot lysis time was shortened by inhibition of activated thrombin activatable fibrinolysis inhibitor (TAFIa). CONCLUSIONS Our data demonstrate that increased sTM enhances APC generation and reduces TG. Simultaneously, the rate of fibrinolysis is delayed due to increased TAFI activation by sTM. Treatment with platelet or FVIIa concentrates may be beneficial to manage this rare bleeding disorder.
Collapse
Affiliation(s)
- Gael B Morrow
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - James Beavis
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Harper
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Patricia Bignell
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mike A Laffan
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Centre for Haematology, Imperial College London, London, UK
| | - Nicola Curry
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Kusadasi N, Sikma M, Huisman A, Westerink J, Maas C, Schutgens R. A Pathophysiological Perspective on the SARS-CoV-2 Coagulopathy. Hemasphere 2020; 4:e457. [PMID: 32885147 PMCID: PMC7430228 DOI: 10.1097/hs9.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Recent evidence is focusing on the presence of a hypercoagulable state with development of both venous and arterial thromboembolic complications in patients infected with SARS-CoV-2. The ongoing activation of coagulation related to the severity of the illness is further characterized by thrombotic microangiopathy and endotheliitis. These microangiopathic changes cannot be classified as classical disseminated intravascular coagulation (DIC). In this short review we describe the interaction between coagulation and inflammation with focus on the possible mechanisms that might be involved in SARS-CoV-2 infection associated coagulopathy in the critically ill.
Collapse
Affiliation(s)
- Nuray Kusadasi
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike Sikma
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Dutch Poisons Information Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Huisman
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger Schutgens
- Van Creveldkliniek, Benign Hematology Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Brouns SL, Provenzale I, van Geffen JP, van der Meijden PE, Heemskerk JW. Localized endothelial-based control of platelet aggregation and coagulation under flow: A proof-of-principle vessel-on-a-chip study. J Thromb Haemost 2020; 18:931-941. [PMID: 31863548 PMCID: PMC7187151 DOI: 10.1111/jth.14719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the intact vessel wall, endothelial cells form a barrier between the blood and the remaining vascular structures, serving to maintain blood fluidity and preventing platelet activation and fibrin clot formation. The spatiotemporal space of this inhibition is largely unknown. OBJECTIVE To assess the local inhibitory roles of a discontinuous endothelium, we developed a vessel-on-a-chip model, consisting of a microfluidic chamber coated with the thrombogenic collagen and tissue factor (TF), and covered with patches of human endothelial cells. By flow perfusion of human blood and plasma, the heterogeneous formation of platelet aggregates and fibrin clots was monitored by multicolor fluorescence microscopy. RESULTS On collagen/TF coatings, a coverage of 40% to 60% of human umbilical vein endothelial cells resulted in a strong overall delay in platelet deposition and fibrin fiber formation under flow. Fibrin formation colocalized with the deposited platelets, and was restricted to regions in between endothelial cells, thus pointing to immediate local suppression of the clotting process. Fibrin kinetics were enhanced by treatment of the cells with heparinase III, partially disrupting the glycocalyx, and to a lesser degree by antagonism of the endothelial thrombomodulin. Co-coating of purified thrombomodulin and collagen had a similar coagulation-suppressing effect as endothelial thrombomodulin. CONCLUSIONS In this vessel-on-a-chip system with patches of endothelial cells on thrombogenic surfaces, the coagulant activity under flow is regulated by: (a) the residual exposure of trigger (collagen/TF), (b) the endothelial glycocalyx, and (c) to a lesser degree the endothelial thrombomodulin.
Collapse
Affiliation(s)
- Sanne L.N. Brouns
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Isabella Provenzale
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johanna P. van Geffen
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
12
|
Provenzale I, Brouns SLN, van der Meijden PEJ, Swieringa F, Heemskerk JWM. Whole Blood Based Multiparameter Assessment of Thrombus Formation in Standard Microfluidic Devices to Proxy In Vivo Haemostasis and Thrombosis. MICROMACHINES 2019; 10:mi10110787. [PMID: 31744132 PMCID: PMC6915499 DOI: 10.3390/mi10110787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Microfluidic assays are versatile tests which, using only small amounts of blood, enable high throughput analyses of platelet function in several minutes. In combination with fluorescence microscopy, these flow tests allow real-time visualisation of platelet activation with the possibility of examining combinatorial effects of wall shear rate, coagulation and modulation by endothelial cells. In particular, the ability to use blood and blood cells from healthy subjects or patients makes this technology promising, both for research and (pre)clinical diagnostic purposes. In the present review, we describe how microfluidic devices are used to assess the roles of platelets in thrombosis and haemostasis. We place emphasis on technical aspects and on experimental designs that make the concept of "blood-vessel-component-on-a-chip" an attractive, rapidly developing technology for the study of the complex biological processes of blood coagulability in the presence of flow.
Collapse
Affiliation(s)
- Isabella Provenzale
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| | | | | | | | - Johan W. M. Heemskerk
- Correspondence: (I.P.); (J.W.M.H.); Tel.: +31-43-3881671 or +31-43-3881674 (J.W.M.H.)
| |
Collapse
|
13
|
Scarlatescu E, Juffermans NP, Thachil J. The current status of viscoelastic testing in septic coagulopathy. Thromb Res 2019; 183:146-152. [PMID: 31678709 DOI: 10.1016/j.thromres.2019.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
Sepsis can be associated with different degrees of coagulopathy, ranging from a mild activation of the coagulation system to disseminated intravascular coagulation (DIC). The evaluation of haemostasis in the context of sepsis is important since it has been shown that anticoagulant therapies were beneficial mainly in patients with sepsis-induced DIC, but not in the general population of septic patients. Sepsis-induced haemostatic disturbances are not adequately reflected by standard coagulation tests (SCTs) which only consider the plasmatic components of the haemostatic system and not the cellular components. In addition, SCTs only assess the initiation phase of coagulation and reflect the activity of pro-coagulant factors, but lack sensitivity for the anticoagulant drive and the fibrinolytic activity. Viscoelastic tests (VET) are whole-blood tests which can assess clot formation and dissociation, and the contribution of both plasmatic and cellular components with a shorter turnaround time compared to SCTs. The use of VET in septic patients has proved useful for the assessment of the fibrinolytic activity, detecting hypercoagulable status and for the diagnosis of DIC and mortality risk prediction. While having relevant advantages over SCTs, the VET also present some blind spots or limitations leaving space for future improvement by the development of new reagents or new viscoelastic parameters.
Collapse
Affiliation(s)
- Ecaterina Scarlatescu
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania.
| | - Nicole P Juffermans
- Department of Intensive Care, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
14
|
Morishima Y, Kamisato C, Honda Y. Combined effect of a direct oral anticoagulant edoxaban and an inhibitor of activated thrombin-activatable fibrinolysis inhibitor on clot lysis. J Thromb Thrombolysis 2019; 49:94-99. [PMID: 31396790 DOI: 10.1007/s11239-019-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibrinolysis is regulated by the thrombin/thrombin-activatable fibrinolysis inhibitor (TAFI) system. Thus, anticoagulants and inhibitors of TAFI are expected to accelerate fibrinolysis. The combined effects of an anticoagulant and a TAFIa inhibitor on fibrinolysis remain unknown. The aim of this study was to evaluate the combined effect of edoxaban, an oral direct factor Xa (FXa) inhibitor, and a TAFIa inhibitor, potato tuber carboxypeptidase inhibitor (PCI) on tissue-type plasminogen activator (t-PA)-induced clot lysis in human plasma in vitro. Pooled human plasma (containing 180 ng/mL t-PA and 0.1 nM thrombomodulin) was mixed with edoxaban and/or PCI. Clot formation was induced by 2.5 pM tissue factor and 4 µM phospholipids and clot lysis time was examined. Plasma plasmin-α2 antiplasmin complex (PAP) concentration was measured as a marker of plasmin generation. Edoxaban or PCI alone significantly shortened the t-PA-induced clot lysis time and plasma PAP concentration. The combination of these compounds significantly accelerated the clot lysis compared with the inhibitors alone. Addition of PCI (0.3, 1, and 3 μg/mL) to 75 ng/mL edoxaban increased plasma PAP concentration compared with edoxaban alone; however, compared with PCI alone only the combination of 0.3 μg/mL PCI + 75 ng/mL edoxaban showed the significant increase in PAP concentration. Concomitant use of an oral direct FXa inhibitor, edoxaban, and a TAFIa inhibitor, PCI, significantly accelerate fibrinolysis via enhancement of plasmin generation. These results suggest that the combination of edoxaban and a TAFIa inhibitor might be beneficial for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Yoshiyuki Morishima
- Medical Science Department, Daiichi Sankyo Co., Ltd., 3-5-1 Nihonbashi Honcho, Chuo-ku, Tokyo, 103-8426, Japan.
| | - Chikako Kamisato
- Rare Disease Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yuko Honda
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
15
|
Thrombomodulin alfa prevents the decrease in platelet aggregation in rat models of disseminated intravascular coagulation. Thromb Res 2019; 179:73-80. [PMID: 31096113 DOI: 10.1016/j.thromres.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Disseminated intravascular coagulation (DIC), a deadly complication characterized by uncontrolled hypercoagulation, causes a decrease in the platelet count and impairs platelet aggregation. Thrombomodulin (TM) alfa, a recombinant human soluble TM, reduces hypercoagulation in DIC patients. However, the effects of TM alfa on impaired platelet aggregation remain to be determined. In this study, we aim to investigate the effects of TM alfa on platelet aggregation using lipopolysaccharide (LPS)-induced and tissue factor (TF)-induced DIC rat models. MATERIALS AND METHODS Sprague-Dawley rats were administered TF or LPS intravenously, with or without TM alfa before the injection. Six hours after LPS injection or 1 h after TF infusion, blood samples were obtained, and platelet-rich plasma was prepared. Collagen or adenosine diphosphate-induced platelet aggregation was measured using an aggregometer. In the other experiments, platelets were transfused 1 h after the TF infusion. Five minutes after transfusion, collagen-induced platelet aggregation was also measured. RESULTS The amplitude of platelet aggregation in platelet-rich plasma was decreased in LPS- and TF-treated rats. TM alfa inhibited the decrease in platelet aggregation in a dose-dependent manner. The washed platelet aggregation amplitude was not decreased in TF-treated rats. Suspension of normal platelets in plasma obtained from TF-treated rats reduced platelet aggregation. Platelet transfusion for TF-treated rats increased the platelet count but was unable to improve platelet aggregation. CONCLUSIONS TM alfa attenuated impairment of platelet aggregation in LPS- and TF-induced DIC rat models. The changes in plasma composition played a role in the decrease of platelet aggregation in TF-treated rats.
Collapse
|
16
|
Gao TY, Yang WC, Zhou FH, Song Q. Cooling therapy upregulates protein C activation in heat stressed rats: An experimental study. J Cell Physiol 2019; 234:14181-14186. [PMID: 30633351 DOI: 10.1002/jcp.28114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Protein C (PC) pathway homeostasis is implicated in heat stress (HS). This study determines whether cooling could improve the PC pathway in HS. Fifty-six anesthetized rats were warmed to achieve HS (rectal temperature [Tr] 42°C). These rats were divided into seven groups: (a) control group:sacrifice immediately 15 min after HS; (b) HS+I:sacrifice immediately after 15 min ice-water treatment or (c) 3 hr after HS; (d) HS+C:sacrifice immediately after 15-min cold-water treatment or (e) 3 hr after HS; (f) HS: sacrifice immediately 15 min after HS or (g) 3 hr after HS. Plasma PC, activated protein C (APC), and soluble thrombomodulin (sTM) levels were tested at both time points. After cooling, Tr in the HS+I and HS+C groups significantly decreased, when compared with the HS group, and Tr was significantly lower in the HS+I group than in the HS+C group ( p < 0.05). Furthermore, sTM levels were highest in the HS group among the groups at both time points. Plasma PC and APC levels increased after HS. In the HS+I and HS+C groups, plasma APC levels and the APC/PC ratio significantly increased at both time points. The proportions were significantly higher in the HS+I group than in the HS+C group, and there was no significant increase in APC/PC ratio in the HS group. Cooling exerts an anticoagulant effect following HS by increasing APC levels. Ice-water blanket therapy is more effective than cold-water blanket therapy in increasing APC levels.
Collapse
Affiliation(s)
- Tie-Ying Gao
- Department of Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Chao Yang
- Department of Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fei-Hu Zhou
- Department of Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qing Song
- Department of Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
17
|
Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132:148-158. [DOI: 10.1182/blood-2017-12-768994] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractThrombomodulin (TM) is an integral component of a multimolecular system, localized primarily to the vascular endothelium, that integrates crucial biological processes and biochemical pathways, including those related to coagulation, innate immunity, inflammation, and cell proliferation. These are designed to protect the host from injury and promote healing. The “traditional” role of TM in hemostasis was determined with its discovery in the 1980s as a ligand for thrombin and a critical cofactor for the major natural anticoagulant protein C system and subsequently for thrombin-mediated activation of the thrombin activatable fibrinolysis inhibitor (also known as procarboxypeptidase B2). Studies in the past 2 decades are redefining TM as a molecule with many properties, exhibited via its multiple domains, through its interacting partners, complex regulated expression, and synthesis by cells other than the endothelium. In this report, we review some of the recently reported diverse properties of TM and how these may impact on our understanding of the pathogenesis of several diseases.
Collapse
|
18
|
Wu C, Stafford AR, Fredenburgh JC, Weitz JI, Gils A, Declerck PJ, Kim PY. Lys 42/43/44 and Arg 12 of thrombin-activable fibrinolysis inhibitor comprise a thrombomodulin exosite essential for its antifibrinolytic potential. Thromb Haemost 2017. [PMID: 28640323 DOI: 10.1160/th17-01-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The thrombin-thrombomodulin (TM) complex activates thrombin-activable fibrinolysis inhibitor (TAFI) more efficiently than thrombin alone. The exosite on TAFI required for its TM-dependent activation by thrombin has not been identified. Based on previous work by us and others, we generated TAFI variants with one or more of residues Lys 42, Lys 43, Lys 44 and Arg 12 within the activation peptide mutated to alanine. Mutation of one, two, or three Lys residues or the Arg residue alone decreased the catalytic efficiency of TAFI activation by thrombin-TM by 2.4-, 3.2-, 4.7-, and 15.0-fold, respectively, and increased the TAFI concentrations required for half-maximal prolongation of clot lysis times (K1/2) by 3-, 4,- 15-, and 24-fold, respectively. Mutation of all four residues decreased the catalytic efficiency of TAFI activation by 45.0-fold, increased the K1/2 by 130-fold, and abolished antifibrinolytic activity in a clot lysis assay at physiologic levels of TAFI. Similar trends in the antifibrinolytic activity of the TAFI variants were observed when plasma clots were formed using HUVECs as the source of TM. When thrombin was used as the activator, mutation of all four residues reduced the rate of activation by 1.1-fold compared with wild-type TAFI, suggesting that these mutations only impacted activation kinetics in the presence of TM. Surface plasmon resonance data suggest that mutation of the four residues abrogates TM binding with or without thrombin. Therefore, Lys 42, Lys 43, Lys 44 and Arg 12 are critical for the interaction of TAFI with the thrombin-TM complex, which modulates its antifibrinolytic potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paul Y Kim
- Paul Y. Kim, Thrombosis and Atherosclerosis Research Institute, 237 Barton St. East, Hamilton, Ontario, L8L 2X2, Canada, Tel.: +1 905 521 2100, Fax: +1 905 575 2646, E-mail:
| |
Collapse
|
19
|
Chen K, Stafford AR, Wu C, Yeh CH, Kim PY, Fredenburgh JC, Weitz JI. Exosite 2-Directed Ligands Attenuate Protein C Activation by the Thrombin–Thrombomodulin Complex. Biochemistry 2017; 56:3119-3128. [DOI: 10.1021/acs.biochem.7b00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Chen
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan R. Stafford
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Chengliang Wu
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Calvin H. Yeh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y. Kim
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - James C. Fredenburgh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I. Weitz
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
The impact of the endothelial protein C receptor on thrombin generation and clot lysis. Thromb Res 2017; 152:30-37. [DOI: 10.1016/j.thromres.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/22/2022]
|
21
|
Bazzi ZA, Balun J, Cavallo-Medved D, Porter LA, Boffa MB. Activated thrombin-activatable fibrinolysis inhibitor attenuates the angiogenic potential of endothelial cells: potential relevance to the breast tumour microenvironment. Clin Exp Metastasis 2017; 34:155-169. [PMID: 28124276 DOI: 10.1007/s10585-017-9837-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase zymogen present in blood plasma. Proteolytic activation of TAFI by thrombin, thrombin in complex with the endothelial cell cofactor thrombomodulin, or plasmin results in an enzyme (TAFIa) that removes carboxyl-terminal lysine residues from protein and peptide substrates, including cell-surface plasminogen receptors. TAFIa is therefore capable of inhibiting plasminogen activation in the pericellular milieu. Since plasminogen activation has been linked to angiogenesis, TAFIa could therefore have anti-angiogenic properties, and indeed TAFIa has been shown to inhibit endothelial tube formation in a fibrin matrix. In this study, the TAFI pathway was manipulated by providing exogenous TAFI or TAFIa or by adding a potent and specific inhibitor of TAFIa. We found that TAFIa elicited a series of anti-angiogenic responses by endothelial cells, including decreased endothelial cell proliferation, cell invasion, cell migration, tube formation, and collagen degradation. Moreover, TAFIa decreased tube formation and proteolysis in endothelial cell culture grown alone and in co-culture with breast cancer cell lines. In accordance with these findings, inhibition of TAFIa increased secretion of matrix metalloprotease proenzymes by endothelial and breast cancer cells. Finally, treatment of endothelial cells with TAFIa significantly inhibited plasminogen activation. Taken together our results suggest a novel role for TAFI in inhibiting tumour angiogenic behaviors in breast cancer.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada
| | - Jennifer Balun
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Michael B Boffa
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada.
| |
Collapse
|