1
|
Singh S, Hagelueken G, Ugurlar D, Ramaraje Urs SU, Sharma A, Mahapatra M, Drepper F, Imhof D, Huesgen PF, Oldenburg J, Geyer M, Biswas A. Cryo-EM structure of the human native plasma coagulation factor XIII complex. Blood 2025; 145:438-449. [PMID: 39447073 DOI: 10.1182/blood.2024025369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
ABSTRACT The structure of human coagulation factor XIII (FXIII), a heterotetrameric plasma protransglutaminase that covalently cross-links preformed fibrin polymers, remains elusive until today. The heterotetrameric complex is composed of 2 catalytic FXIII-A and 2 protective FXIII-B subunits. Structural etiology underlying FXIII deficiency has so far been derived from crystallographic structures, all of which are currently available for the FXIII-A2 homodimer only. Here, we present the cryogenic electron microscopy (cryo-EM) structure of a native, human plasma-derived FXIII-A2B2 complex at 2.4 Å resolution. The structure provides detailed information on FXIII subunit interacting interfaces as the 2 subunits interact strongly in plasma. The native FXIII-A2B2 complex reveals a pseudosymmetric heterotetramer of 2 FXIII-B monomers intercalating with a symmetric FXIII-A2 dimer forming a "crown"-like assembly. The symmetry axes of the A2 and B2 homodimers are twisted relative to each other such that Sushi domain 1 interacts with the catalytic core of the A subunit, and Sushi domain 2 with the symmetry related A' subunit, and vice versa. We also report 4 novel mutations in the F13A1 gene encoding the FXIII-A subunit from a cohort of patients with severe FXIII deficiency. Our structure reveals the etiological basis of homozygous and heterozygous pathogenic mutations and explains the conditional dominant negative effects of heterozygous mutations. This atomistic description of complex interfaces is consistent with previous biochemical data and shows a congruence between the structural biochemistry of the FXIII complex and the clinical features of FXIII deficiency.
Collapse
Affiliation(s)
- Sneha Singh
- Arijit Biswas Laboratory, Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Deniz Ugurlar
- Materials and Structural Analysis, ThermoFisher Scientific, Eindhoven, The Netherlands
| | - Samhitha Urs Ramaraje Urs
- Arijit Biswas Laboratory, Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Manoranjan Mahapatra
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Friedel Drepper
- Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Diana Imhof
- Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Pitter F Huesgen
- Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Johannes Oldenburg
- Arijit Biswas Laboratory, Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Arijit Biswas
- Arijit Biswas Laboratory, Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Javed H, Singh S, Urs SUR, Oldenburg J, Biswas A. Genetic landscape in coagulation factor XIII associated defects – Advances in coagulation and beyond. Blood Rev 2022; 59:101032. [PMID: 36372609 DOI: 10.1016/j.blre.2022.101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Coagulation factor XIII (FXIII) acts as a fine fulcrum in blood plasma that maintains the balance between bleeding and thrombosis by covalently crosslinking the pre-formed fibrin clot into an insoluble one that is resistant to premature fibrinolysis. In plasma, FXIII circulates as a pro-transglutaminase complex composed of the dimeric catalytic FXIII-A encoded by the F13A1 gene and dimeric carrier/regulatory FXIII-B subunits encoded by the F13B gene. Growing evidence accumulated over decades of exhaustive research shows that not only does FXIII play major roles in both pathological extremes of hemostasis i.e. bleeding and thrombosis, but that it is, in fact, a pleiotropic protein with physiological roles beyond coagulation. However, the current FXIII genetic-epidemiological literature is overwhelmingly derived from the bleeding pathology associated with its deficiency. In this article we review the current clinical, functional, and molecular understanding of this fascinating multifaceted protein, especially putting into the same perspective its genetic landscape.
Collapse
|
3
|
Bronić A, Ferenčak G, Bernat R, Leniček-Krleža J, Dumić J, Dabelić S. Association of fibrinogen and plasmin inhibitor, but not coagulation factor XIII gene polymorphisms with coronary artery disease. J Med Biochem 2021; 40:138-149. [PMID: 33776563 PMCID: PMC7982289 DOI: 10.5937/jomb0-26839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/26/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND In the final phase of clot formation, fibrinogen constitutes frame, whereas factor XIII (FXIII) active form is responsible for the covalent cross-linking of fibrin fibres and plasmin inhibitor (PI), thus contributing to clot stability. It could be expected that any change of coagulation factors' structure affects the clot formation and modulates the atherothrombotic risk. The aim was to determine the frequency of four single nucleotide polymorphisms: (i) A > G in codon 312 of the fibrinogen α-chain gene (rs6050, Thr312AlaFGA), (ii) C > T at position 10034 of the 3 - untranslated region in the fibrinogen γ-chain gene (rs2066865, 10034C > T FGG), (iii) C > T in codon 564 of the FXIII-A subunit gene (rs5982, Pro564LeuFXIII-A), and (iv) C > T in codon 6 of the plasmin inhibitor gene (rs2070863, Arg6TrpPI) in Croatian patients and their association with coronary artery disease (CAD). METHODS We performed the unrelated case-control association study on the consecutive sample of patients 18 years old, who had undergone coronary angiography for investigation of chest pain and suspected CAD. The cases were patients with confirmed CAD (N=201), and the controls were the subjects with no CAD (N=119). Samples were genotyped using PCR-RFLP analysis. RESULTS Observed frequencies of the rare alleles of Thr312Ala FGA, 10034C > T FGG, Leu564Pro FXIII-A and Arg6Trp PI polymorphisms were 21%, 17%, 14%, 20%, respectively. Patients with 10034C > T FGG CC genotype had 3.5 times (95% CI 1.02-12.03) higher adjusted odds for CAD than patients with 10034C > T FGG TT genotype. Patients with Arg6Trp PI CC genotype had 3.86 times (95% CI 1.23-12.12) higher odds for CAD than patients with Arg6Trp PI TT genotype. It seems that those genotype-related higher odds are also male-gender related. No difference was observed regarding any other investigated polymorphism. CONCLUSIONS Our finding suggests that 10034C > T FGG and Arg6Trp PI are associated with CAD.
Collapse
Affiliation(s)
- Ana Bronić
- Sestre Milosrdnice University Hospital Centre, Clinical Institute of Chemistry, Department for Laboratory Diagnostics in Traumatology and Orthopaedics, Zagreb, Croatia
| | - Goran Ferenčak
- Medicol Outpatients Clinic, Department of Laboratory Diagnostics, Zagreb, Croatia
| | - Robert Bernat
- Westpfalz-Klinikum GmbH, Department of Internal Medicine 2, Kaiserslautern, Germany
| | - Jasna Leniček-Krleža
- Children's Hospital Zagreb, Department of Laboratory Diagnostics, Zagreb, Croatia
| | - Jerka Dumić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | - Sanja Dabelić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| |
Collapse
|
4
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
5
|
Identification of amino acid residues that are crucial for FXIII-A intersubunit interactions and stability. Blood 2020; 135:145-152. [PMID: 31697820 DOI: 10.1182/blood.2019002127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 12/25/2022] Open
Abstract
Coagulation factor XIII (FXIII) is the main stabilizer of the fibrin clot. It circulates in plasma as a tetramer of two A-subunits and two B-subunits. Under physiological conditions, FXIII-A exists as a dimer (FXIII-A2). The interactions between the FXIII-A-subunits that stabilize the FXIII-A2 dimer are not fully understood. We therefore designed a systematic approach to identify amino acid residues crucial for the expression and stability of FXIII-A2. Based on the available FXIII-A2 crystal structure, we identified 12 amino acid residues forming intersubunit salt bridges and 21 amino acid residues forming hydrogen bonds between the two A-subunits. We chose 10 amino acid residues that form 5 particularly strong interactions, performed site-directed mutagenesis, and expressed the mutants in CHO cells. Disruption of these interactions by single mutation of Lys257, Lys113, Asp343, Glu401, or Asp404 abolished the expression of properly folded, soluble, and functional FXIII-A in CHO cells. On the contrary, mutation of Glu111, Arg100, or Asn112 had no significant effect on FXIII-A expression. Our results suggest that 4 intersubunit interactions (Arg11-Asp343, Lys113-Asp367, Lys257-Glu401, and Arg260-Asp404) are essential for the stability of FXIII-A2. Our findings are supported by reported mutations at Lys257, Arg260, and Asp404 found in patients with congenital FXIII-A deficiency.
Collapse
|
6
|
Singh S, Dodt J, Volkers P, Hethershaw E, Philippou H, Ivaskevicius V, Imhof D, Oldenburg J, Biswas A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci Rep 2019; 9:11324. [PMID: 31383913 PMCID: PMC6683118 DOI: 10.1038/s41598-019-47815-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/24/2019] [Indexed: 01/25/2023] Open
Abstract
The dimeric FXIII-A2, a pro-transglutaminase is the catalytic part of the heterotetrameric coagulation FXIII-A2B2 complex that upon activation by calcium binding/thrombin cleavage covalently cross-links preformed fibrin clots protecting them from premature fibrinolysis. Our study characterizes the recently disclosed three calcium binding sites of FXIII-A concerning evolution, mutual crosstalk, thermodynamic activation profile, substrate binding, and interaction with other similarly charged ions. We demonstrate unique structural aspects within FXIII-A calcium binding sites that give rise to functional differences making FXIII unique from other transglutaminases. The first calcium binding site showed an antagonistic relationship towards the other two. The thermodynamic profile of calcium/thrombin-induced FXIII-A activation explains the role of bulk solvent in transitioning its zymogenic dimeric form to an activated monomeric form. We also explain the indirect effect of solvent ion concentration on FXIII-A activation. Our study suggests FXIII-A calcium binding sites could be putative pharmacologically targetable regions.
Collapse
Affiliation(s)
- Sneha Singh
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | | | | | - Emma Hethershaw
- Discovery and Translational Science Department, University of Leeds, Leeds, LS29JT, United Kingdom
| | - Helen Philippou
- Discovery and Translational Science Department, University of Leeds, Leeds, LS29JT, United Kingdom
| | - Vytautus Ivaskevicius
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn, 53121, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion medicine, University Hospital of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
7
|
Hethershaw EL, Adamson PJ, Smith KA, Goldsberry WN, Pease RJ, Radford SE, Grant PJ, Ariëns RAS, Maurer MC, Philippou H. The role of β-barrels 1 and 2 in the enzymatic activity of factor XIII A-subunit. J Thromb Haemost 2018; 16:1391-1401. [PMID: 29675848 PMCID: PMC6175083 DOI: 10.1111/jth.14128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 01/04/2023]
Abstract
Essentials The roles of β-barrels 1 and 2 in factor XIII (FXIII) are currently unknown. FXIII truncations lacking β-barrel 2, both β-barrels, or full length FXIII, were made. Removing β-barrel 2 caused total loss of activity, removing both β-barrels returned 30% activity. β-barrel 2 is necessary for exposure of the active site cysteine during activation. SUMMARY Background Factor XIII is composed of an activation peptide segment, a β-sandwich domain, a catalytic core, and, finally, β-barrels 1 and 2. FXIII is activated following cleavage of its A-subunits by thrombin. The resultant transglutaminase activity leads to increased resistance of fibrin clots to fibrinolysis. Objectives To assess the functional roles of β-barrels 1 and 2 in FXIII, we expressed and characterized the full-length FXIII A-subunit (FXIII-A) and variants truncated to residue 628 (truncated to β-barrel 1 [TB1]), residue 515 (truncated to catalytic core [TCC]), and residue 184 (truncated to β-sandwich). Methods Proteins were analyzed by gel electrophoresis, circular dichroism, fluorometric assays, and colorimetric activity assays, clot structure was analyzed by turbidity measurements and confocal microscopy, and clot formation was analyzed with a Chandler loop system. Results and Conclusions Circular dichroism spectroscopy and tryptophan fluorometry indicated that full-length FXIII-A and the truncation variants TCC and TB1 retain their secondary and tertiary structure. Removal of β-barrel 2 (TB1) resulted in total loss of transglutaminase activity, whereas the additional removal of β-barrel 1 (TCC) restored enzymatic activity to ~ 30% of that of full-length FXIII-A. These activity trends were observed with physiological substrates and smaller model substrates. Our data suggest that the β-barrel 1 domain protects the active site cysteine in the FXIII protransglutaminase, whereas the β-barrel 2 domain is necessary for exposure of the active site cysteine during activation. This study demonstrates the importance of individual β-barrel domains in modulating access to the FXIII active site region.
Collapse
Affiliation(s)
- E. L. Hethershaw
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | - P. J. Adamson
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | - K. A. Smith
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | | | - R. J. Pease
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | - S. E. Radford
- Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - P. J. Grant
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | - R. A. S. Ariëns
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| | - M. C. Maurer
- Chemistry DepartmentUniversity of LouisvilleLouisvilleKYUSA
| | - H. Philippou
- Discovery and Translational Science DepartmentLeeds Institute for Cardiovascular and Metabolic MedicineFaculty of Medicine and HealthUniversity of LeedsLeedsUK
| |
Collapse
|