1
|
Kvasnicka T, Cifkova R, Zenahlikova Z, Bobcikova P, Syruckova A, Sevcik M, Dusková D, Kvasnicka J. The Prevalence of the Thrombotic SNPs rs6025, rs1799963, rs2066865, rs2289252 and rs8176719 in Patients with Venous Thromboembolism in the Czech Population. Clin Appl Thromb Hemost 2025; 31:10760296251324202. [PMID: 40094632 PMCID: PMC11915282 DOI: 10.1177/10760296251324202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
IntroductionStudy aimed to determine the occurrence of 5 thrombosis-related single-nucleotide polymorphisms (SNPs) in patients with venous thromboembolism (VTE) (n = 2630) and a control group (n = 2637) in the Czech population.MethodsThe following gene SNPs were detected in both groups: F5 Leiden (rs6025), F2 (rs1799963), FGG, fibrinogen gamma' (rs2066865), F11 (rs2289252) and ABO (rs8176719). Statistical analysis was performed using SAS statistical software with population genetics tools.ResultsHeterozygotes for F5 Leiden were associated with a 5.58-fold and homozygotes F5 Leiden with a 33.46-fold increased risk of VTE. At SNP rs1799963 (F2, prothrombin), only heterozygotes had a significant 3.9-fold increased risk of VTE. The findings at SNP rs2066865 (fibrinogen gamma', FGG) showed a 1.37-fold increased risk of VTE for FGG heterozygotes and a 1.77-fold increased risk of VTE for FGG homozygotes. There is also a significant 1.42-fold increase risk of VTE in the heterozygotes and a 1.80-fold increase risk of VTE in the homozygotes of the SNP rs 2289252 (F11). Further higher increases in the risk of VTE in both variants were found in patients with VTE at rs8176719 (ABO, non-O). It corresponds to a 2.2-fold increase in the risk of VTE in heterozygotes and a 3.5-fold increase in the risk of VTE in homozygotes.ConclusionBesides F5 Leiden and prothrombin mutation, the study suggests that the gene polymorphisms of FGG (rs2066865), F11 (rs2289252) and ABO (rs8176719) play a role as an independent heritable risk factor for VTE in the Czech population.
Collapse
Affiliation(s)
- Tomas Kvasnicka
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Renata Cifkova
- Center for Cardiovascular Prevention, first Faculty of Medicine, Charles University and Thomayer University Hospital, Prague,
Czech Republic
| | - Zuzana Zenahlikova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petra Bobcikova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Alena Syruckova
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Sevcik
- Thrombotic Centre, Institute of Medical Biochemistry and Laboratory Diagnostics, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Daniela Dusková
- 1st Department of Medicine, Division of Hematology, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Blood Transfusion, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Kvasnicka
- 1st Department of Medicine, Division of Hematology, first Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
2
|
Peralta L, Khan M, Meseeha MG, Richards JL, Poulose J, Talamo G. Venous thromboembolism in patients with hairy cell leukemia. Hematology 2024; 29:2431405. [PMID: 39602205 DOI: 10.1080/16078454.2024.2431405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Hairy cell leukemia (HCL) is rare leukemia of mature B cells, accounting for 2% of all lymphoid neoplasms. Although the association of venous thromboembolism (VTE) with cancer is well established, there is no systematic study describing VTE in HCL. AIM To analyze prevalence and risk factors associated with VTE in HCL patients. METHODS We retrospectively reviewed data from the medical records of 56 consecutive HCL patients evaluated in our Hematology/Oncology clinic between 1998 and 2023. RESULTS The median age at diagnosis was 59 years (range, 37-94), and 49 patients (87%) were male. With a median follow-up of 122 months (1-291), we identified 11 episodes of VTE in 8 (14%) HCL patients: pulmonary embolism (PE) (5 cases) with or without concurrent deep venous thrombosis (DVT), and DVT alone (6 cases). All thrombotic episodes occurred after the diagnosis of HCL, or at the same time of it, as presenting clinical manifestation of the HCL. Risk factors for VTE other than cancer were identified in only 3 patients. CONCLUSION Our study found a high incidence of VTE in patients with HCL, mostly in the absence of other provoking factors, suggesting that this hematologic malignancy is associated with an underlying thrombophilic state.
Collapse
Affiliation(s)
- Lauren Peralta
- Integrative Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Muneer Khan
- Guthrie Robert Packer Hospital, Sayre, PA, USA
| | | | | | | | | |
Collapse
|
3
|
Spanoudaki M, Itziou A, Cheimaras A, Tsiripidis O, Risvas G, Tsitlakidou N, Balis V. Investigating the Matrix of Factor V Leiden (G1691A), Factor II Prothrombin (G2021A), MTHFR C677T and A1298G Polymorphisms in Greek Population: A Preliminary Study. Med Sci (Basel) 2024; 12:61. [PMID: 39584911 PMCID: PMC11587029 DOI: 10.3390/medsci12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Thrombophilia, characterized by an increased risk of thrombosis, can result from genetic polymorphisms in clotting factors. This study aims to investigate the prevalence of factor V Leiden (G1691A), factor II prothrombin (G20210A), and MTHFR (C677T and A1298C) polymorphisms in a Greek population, evaluating not only their association with thrombophilia, but also broader health implications. METHODS We conducted a cross-sectional study involving one hundred apparently healthy adults from Thessaloniki, Greece. After obtaining informed consent, DNA was isolated and analyzed using real-time PCR to detect the frequencies of the aforementioned polymorphisms. RESULTS The genetic distribution of the examined polymorphisms aligns closely with that observed in Northern Europe. Factor V Leiden (FVL) and prothrombin G20210A mutations were predominantly wild types, with a small percentage showing heterozygous mutations. The MTHFR C677T and A1298C polymorphisms showed a higher variation in allele frequency. Certain lifestyle factors such as smoking and high body mass index were significantly associated with the occurrence of combined MTHFR genotypes, suggesting an interaction between genetic and environmental risk factors. Family cancer and cardiovascular history was significantly associated with combined FVL and prothrombin G20210A and MTHFR polymorphism heterozygous carriers. CONCLUSIONS Our findings indicate that these genetic polymorphisms are not only pivotal in understanding thrombophilia but also have broader implications for cardiovascular disease and cancer. This study highlights the need for further research into the combined effects of genetic and epigenetic factors on health, which could lead to improved screening and personalized preventive healthcare strategies.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (M.S.); (A.C.)
- Clinical Dietetics and Nutritional Department, 424 General Military Hospital, 56429 Thessalonki, Greece
- Dietetetics and Biomedical Department, School of Health Sciences Aegean College, 45 Tsimiski Str., 54623 Thessaloniki, Greece;
| | - Aikaterini Itziou
- Department of Midwifery, School of Health Sciences, University of Western Macedonia, 50200 Ptolemaida, Greece;
| | - Antonios Cheimaras
- Department of Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece; (M.S.); (A.C.)
| | | | - Grigoris Risvas
- Dietetics Department, School of Sciences, Aegean College, 15 Panepistimiou Str., 10564 Athens, Greece;
| | - Naysika Tsitlakidou
- Dietetetics and Biomedical Department, School of Health Sciences Aegean College, 45 Tsimiski Str., 54623 Thessaloniki, Greece;
| | - Vasileios Balis
- Dietetetics and Biomedical Department, School of Health Sciences Aegean College, 45 Tsimiski Str., 54623 Thessaloniki, Greece;
- Quality Management, Regenerative Medicine Centre, Medical School, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Brown LC, Robinson M, McCormack M, Steuerwald N, Symanowski J, Sha W, Bose R, Neelands B, Akinyelu T, Livasy C, Li W, Haynes N, Hamilton A, Smith M, Clark PE, Patel J, Burgess EF. Thrombosis Rates and Genetic Thrombophilia Risk Among Patients With Advanced Germ Cell Tumors Treated With Chemotherapy. Clin Genitourin Cancer 2024; 22:102086. [PMID: 38697880 DOI: 10.1016/j.clgc.2024.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Men with advanced germ cell tumors (GCT) treated with chemotherapy are at high risk of venous thromboembolism (VTE). Predictors of VTE may identify patients who would benefit from prophylactic anticoagulation. PATIENTS AND METHODS Men with advanced GCT (Stage IS, II, III) treated with chemotherapy were identified at 2 centers. High genomic risk was defined from a 5 single nucleotide polymorphism (SNP) germline panel. Logistic regression was used to evaluate the impact of genomic risk on VTE within 6 months of chemotherapy initiation. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) was used to build models to predict VTE based on clinical variables and an 86 SNP panel. RESULTS This 123-patient cohort experienced a VTE rate of 26% with an incidence of high genomic risk of 21%. Men with high genomic risk did not have a significantly higher VTE rate (31%, 8/26) than men with low genomic risk (25%, 24/97), unadjusted OR 1.4 (95% CI 0.5-3.5, P = .54). Incorporation of clinical variables (Khorana score, N3 status and elevated LDH) resulted in adjusted OR 2.1 (95% CI 0.7-6.5, P = .18). A combined model using clinical variables and 86 SNPs performed similarly (AUC 0.77) compared to clinical variables alone (AUC 0.72). CONCLUSIONS A previously established 5-SNP panel was not associated with VTE among patients with GCT receiving chemotherapy. However, multivariable models based on clinical variables alone warrant further validation to inform prophylactic anticoagulation strategies.
Collapse
Affiliation(s)
- Landon C Brown
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC.
| | - Myra Robinson
- Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Michael McCormack
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC
| | - Nury Steuerwald
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - James Symanowski
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Wei Sha
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Rupali Bose
- Atrium Health, Levine Cancer Institute, Charlotte, NC
| | | | - Tobi Akinyelu
- Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Chad Livasy
- Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Wencheng Li
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC
| | | | | | - Mathew Smith
- Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Peter E Clark
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Jai Patel
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| | - Earle F Burgess
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC; Atrium Health, Levine Cancer Institute, Charlotte, NC
| |
Collapse
|
5
|
Martínez-Gómez LE, Martinez-Armenta C, Tusie-Luna T, Vázquez-Cárdenas P, Vidal-Vázquez RP, Ramírez-Hinojosa JP, Gómez-Martín D, Vargas-Alarcón G, Posadas-Sánchez R, Fragoso JM, de la Peña A, Rodríguez-Pérez JM, Mata-Miranda MM, Vázquez-Zapién GJ, Martínez-Cuazitl A, Martínez-Ruiz FDJ, Zayago-Angeles DM, Ramos-Tavera L, Méndez-Aguilera A, Camacho-Rea MDC, Ordoñez-Sánchez ML, Segura-Kato Y, Suarez-Ahedo C, Olea-Torres J, Herrera-López B, Pineda C, Martínez-Nava GA, López-Reyes A. The fatal contribution of serine protease-related genetic variants to COVID-19 outcomes. Front Immunol 2024; 15:1335963. [PMID: 38601158 PMCID: PMC11004237 DOI: 10.3389/fimmu.2024.1335963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Edith Martínez-Gómez
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Martinez-Armenta
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Rosa P. Vidal-Vázquez
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Juan P. Ramírez-Hinojosa
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Aurora de la Peña
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular y Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mónica M. Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Gustavo J. Vázquez-Zapién
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Adriana Martínez-Cuazitl
- Laboratorio de Biología Celular y Tisular, Laboratorio de Embriología, Escuela Médico Militar, Universidad del Ejército y Fuerza Aérea, Mexico City, Mexico
| | - Felipe de J. Martínez-Ruiz
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Dulce M. Zayago-Angeles
- Nuevo Hospital General Delegación Regional Sur de la Ciudad de México Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Luis Ramos-Tavera
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - Alberto Méndez-Aguilera
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - María del C. Camacho-Rea
- Department of Immunology and Rheumatology, Departamento de Inmunogenética, Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Mexico City, Mexico
| | - María L. Ordoñez-Sánchez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Yayoi Segura-Kato
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico City, Mexico
| | - Carlos Suarez-Ahedo
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Jessel Olea-Torres
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Brígida Herrera-López
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Carlos Pineda
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Gabriela A. Martínez-Nava
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Dirección General, Departamento de Reconstrucción Articular, Laboratorio Facilitador, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
6
|
Drăgan A, Drăgan AŞ. Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice. Cancers (Basel) 2024; 16:458. [PMID: 38275899 PMCID: PMC10813930 DOI: 10.3390/cancers16020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Many cancer patients will experience venous thromboembolism (VTE) at some stage, with the highest rate in the initial period following diagnosis. Novel cancer therapies may further enhance the risk. VTE in a cancer setting is associated with poor prognostic, a decreased quality of life, and high healthcare costs. If thromboprophylaxis in hospitalized cancer patients and perioperative settings is widely accepted in clinical practice and supported by the guidelines, it is not the same situation in ambulatory cancer patient settings. The guidelines do not recommend primary thromboprophylaxis, except in high-risk cases. However, nowadays, risk stratification is still challenging, although many tools have been developed. The Khrorana score remains the most used method, but it has many limits. This narrative review aims to present the current relevant knowledge of VTE risk assessment in ambulatory cancer patients, starting from the guideline recommendations and continuing with the specific risk assessment methods and machine learning models approaches. Biomarkers, genetic, and clinical features were tested alone or in groups. Old and new models used in VTE risk assessment are exposed, underlining their clinical utility. Imaging and biomolecular approaches to VTE screening of outpatients with cancer are also presented, which could help clinical decisions.
Collapse
Affiliation(s)
- Anca Drăgan
- Department of Cardiovascular Anaesthesiology and Intensive Care, Emergency Institute for Cardiovascular Diseases “Prof. Dr. C C Iliescu”, 258 Fundeni Road, 022328 Bucharest, Romania
| | - Adrian Ştefan Drăgan
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Roy DC, Wang TF, Carrier M, Mallick R, Burger D, Hawken S, Wells PS. Thrombophilia gene mutations predict venous thromboembolism in ambulatory cancer patients receiving chemotherapy. J Thromb Haemost 2023; 21:3184-3192. [PMID: 37536569 DOI: 10.1016/j.jtha.2023.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Inherited thrombophilia and cancer both independently increase the risk of venous thromboembolism (VTE). However, whether the increased VTE risk associated with inherited thrombophilia exists in cancer patients is less clear. OBJECTIVES Our objective was to determine the influence of inherited thrombophilia on VTE and bleeding risk in moderate-to-high-risk ambulatory cancer patients receiving chemotherapy. METHODS We conducted a post hoc analysis using blood samples from patients enrolled in the AVERT trial to determine if previously recognized thrombophilia gene mutations (prothrombin factor [F] II G20210A, FXI, fibrinogen gamma, serpin family A member 10, FV K858R, FXIII, FV Leiden [FVL], and ABO blood) were associated with VTE or bleeding during the 7-months after starting chemotherapy. Logistic regression was used to compare heterozygous and homozygous mutations (combined) to wild-type. VTE rates, bleeding rates, and risk differences for mutations stratified by prophylactic anticoagulation use were calculated. RESULTS Of the 447 patients, there were 39 VTE and 39 bleeding events. The odds of VTE were significantly increased with FVL mutation and non-O blood type (odds ratio [OR]: 5.2; 95% CI: 1.9-14.7 and OR: 2.7; 95% CI: 1.2-6.1, respectively). The use of anticoagulation prophylaxis resulted in complete protection in FVL patients, whereas those not receiving anticoagulation had a VTE rate of 119 per 100 patient-years. Lower VTE rates were also observed in non-O blood type patients taking prophylactic anticoagulation. No other thrombophilia genes tested were significantly associated with VTE or bleeding. CONCLUSION Our results indicate that FVL mutation and ABO blood type may be important VTE predictors in cancer patients starting chemotherapy.
Collapse
Affiliation(s)
- Danielle Carole Roy
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada.
| | - Tzu-Fei Wang
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc Carrier
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Ranjeeta Mallick
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dylan Burger
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steven Hawken
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Philip S Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Guman NAM, Mulder FI, Ferwerda B, Zwinderman AH, Kamphuisen PW, Büller HR, van Es N. Polygenic risk scores for prediction of cancer-associated venous thromboembolism in the UK Biobank cohort study. J Thromb Haemost 2023; 21:3175-3183. [PMID: 37481074 DOI: 10.1016/j.jtha.2023.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Guidelines recommend thromboprophylaxis for patients with cancer at high risk of venous thromboembolism (VTE). Polygenic risk scores may improve VTE prediction but have not yet been evaluated in patients with cancer. OBJECTIVES We assessed the performance of the 5-, 37-, 297-, extended 297- (additionally including factor V Leiden and prothrombin G20210A), and 100-single-nucleotide polymorphism (SNP) scores in predicting cancer-associated VTE in the UK Biobank, a population-based, prospective cohort study. METHODS The primary outcome was VTE during 12 months after cancer diagnosis. Cancer and VTE diagnosis were based on ICD-10 codes. Discrimination was evaluated by c-indices and subdistribution hazard ratios in the upper vs 3 lower quartiles of the scores in a competing risk model. As a comparison, the c-index was calculated for the Khorana cancer type risk classification. RESULTS Of 36 150 patients with cancer (median age, 66 years; 48.7% females), 1018 (2.8%) developed VTE. C-indices at 12 months ranged from 0.56 (95% CI, 0.54-0.58) for the 5-SNP to 0.60 (95% CI, 0.58-0.62) for the extended 297-SNP scores. The subdistribution hazard ratios ranged from 1.36 (95% CI, 1.19-1.56) for the 5-SNP to 1.90 (95% CI, 1.68-2.16) for the extended 297-SNP scores and were consistent after adjusting for cancer type. For the Khorana cancer type classification, the c-index was 0.60 (95% CI, 0.58-0.61), which increased to 0.65 (95% CI, 0.63-0.67, +0.05; 95% CI, 0.04-0.07) when combined with the extended 297-SNP score. CONCLUSION These findings demonstrate that polygenic VTE risk scores can identify patients with cancer with a 1.9-fold higher VTE risk independent of cancer type. Combined clinical-genetic scores to improve cancer-associated VTE prediction should be evaluated further.
Collapse
Affiliation(s)
- Noori A M Guman
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands; Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands.
| | - Frits I Mulder
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands; Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Pieter W Kamphuisen
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands; Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands
| | - Harry R Büller
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Nick van Es
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Natae SF, Merzah MA, Sándor J, Ádány R, Bereczky Z, Fiatal S. A combination of strongly associated prothrombotic single nucleotide polymorphisms could efficiently predict venous thrombosis risk. Front Cardiovasc Med 2023; 10:1224462. [PMID: 37745125 PMCID: PMC10511882 DOI: 10.3389/fcvm.2023.1224462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Background Venous thrombosis (VT) is multifactorial trait that contributes to the global burden of cardiovascular diseases. Although abundant single nucleotide polymorphisms (SNPs) provoke the susceptibility of an individual to VT, research has found that the five most strongly associated SNPs, namely, rs6025 (F5 Leiden), rs2066865 (FGG), rs2036914 (F11), rs8176719 (ABO), and rs1799963 (F2), play the greatest role. Association and risk prediction models are rarely established by using merely the five strongly associated SNPs. This study aims to explore the combined VT risk predictability of the five SNPs and well-known non-genetic VT risk factors such as aging and obesity in the Hungarian population. Methods SNPs were genotyped in the VT group (n = 298) and control group (n = 400). Associations were established using standard genetic models. Genetic risk scores (GRS) [unweighted GRS (unGRS), weighted GRS (wGRS)] were also computed. Correspondingly, the areas under the receiver operating characteristic curves (AUCs) for genetic and non-genetic risk factors were estimated to explore their VT risk predictability in the study population. Results rs6025 was the most prevalent VT risk allele in the Hungarian population. Its risk allele frequency was 3.52-fold higher in the VT group than that in the control group [adjusted odds ratio (AOR) = 3.52, 95% CI: 2.50-4.95]. Using all genetic models, we found that rs6025 and rs2036914 remained significantly associated with VT risk after multiple correction testing was performed. However, rs8176719 remained statistically significant only in the multiplicative (AOR = 1.33, 95% CI: 1.07-1.64) and genotypic models (AOR = 1.77, 95% CI: 1.14-2.73). In addition, rs2066865 lost its significant association with VT risk after multiple correction testing was performed. Conversely, the prothrombin mutation (rs1799963) did not show any significant association. The AUC of Leiden mutation (rs6025) showed better discriminative accuracy than that of other SNPs (AUC = 0.62, 95% CI: 0.57-0.66). The wGRS was a better predictor for VT than the unGRS (AUC = 0.67 vs. 0.65). Furthermore, combining genetic and non-genetic VT risk factors significantly increased the AUC to 0.89 with statistically significant differences (Z = 3.924, p < 0.0001). Conclusions Our study revealed that the five strongly associated SNPs combined with non-genetic factors could efficiently predict individual VT risk susceptibility. The combined model was the best predictor of VT risk, so stratifying high-risk individuals based on their genetic profiling and well-known non-modifiable VT risk factors was important for the effective and efficient utilization of VT risk preventive and control measures. Furthermore, we urged further study that compares the VT risk predictability in the Hungarian population using the formerly discovered VT SNPs with the novel strongly associated VT SNPs.
Collapse
Affiliation(s)
- Shewaye Fituma Natae
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Mohammed Abdulridha Merzah
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Hou Y, Zhou M, Li Y, Tian T, Sun X, Chen M, Xu W, Lu M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:797-811. [PMID: 35687049 DOI: 10.1002/mc.23422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yaxuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Guidance Center for Social Psychological Service, Wuhan Mental Health Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Fricke-Galindo I, Buendia-Roldan I, Chavez-Galan L, Pérez-Rubio G, Hernández-Zenteno RDJ, Ramos-Martinez E, Zazueta-Márquez A, Reyes-Melendres F, Alarcón-Dionet A, Guzmán-Vargas J, Bravo-Gutiérrez OA, Quintero-Puerta T, Gutiérrez-Pérez IA, Ortega-Martínez A, Ambrocio-Ortiz E, Nava-Quiroz KJ, Bañuelos-Flores JL, Jaime-Capetillo ME, Mejía M, Rojas-Serrano J, Falfán-Valencia R. SERPINE1 rs6092 Variant Is Related to Plasma Coagulation Proteins in Patients with Severe COVID-19 from a Tertiary Care Hospital. BIOLOGY 2022; 11:biology11040595. [PMID: 35453794 PMCID: PMC9029072 DOI: 10.3390/biology11040595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
An impaired coagulation process has been described in patients with severe or critical coronavirus disease (COVID-19). Nevertheless, the implication of coagulation-related genes has not been explored. We aimed to evaluate the impact of F5 rs6025 and SERPINE1 rs6092 on invasive mechanical ventilation (IMV) requirement and the levels of coagulation proteins among patients with severe COVID-19. Four-hundred fifty-five patients with severe COVID-19 were genotyped using TaqMan assays. Coagulation-related proteins (P-Selectin, D-dimer, P-selectin glycoprotein ligand-1, tissue plasminogen activator [tPA], plasminogen activator inhibitor-1, and Factor IX) were assessed by cytometric bead arrays in one- and two-time determinations. Accordingly, SERPINE1 rs6092, P-Selectin (GG 385 pg/mL vs. AG+AA 632 pg/mL, p = 0.0037), and tPA (GG 1858 pg/mL vs. AG+AA 2546 pg/mL, p = 0.0284) levels were different. Patients carrying the CT F5-rs6025 genotype exhibited lower levels of factor IX (CC 17,136 pg/mL vs. CT 10,247 pg/mL, p = 0.0355). Coagulation proteins were also different among IMV patients than non-IMV. PSGL-1 levels were significantly increased in the late stage of COVID-19 (>10 days). The frequencies of F5 rs6025 and SERPINE1 rs6092 variants were not different among IMV and non-IMV. The SERPINE1 rs6092 variant is related to the impaired coagulation process in patients with COVID-19 severe.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (A.A.-D.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | | | - Espiridión Ramos-Martinez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico;
| | - Armando Zazueta-Márquez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Felipe Reyes-Melendres
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Aimé Alarcón-Dionet
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (A.A.-D.)
| | - Javier Guzmán-Vargas
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Omar Andrés Bravo-Gutiérrez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Teresa Quintero-Puerta
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Ilse Adriana Gutiérrez-Pérez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Alejandro Ortega-Martínez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - José Luis Bañuelos-Flores
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.L.B.-F.); (M.E.J.-C.)
| | - María Esther Jaime-Capetillo
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.L.B.-F.); (M.E.J.-C.)
| | - Mayra Mejía
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 06720, Mexico; (M.M.); (J.R.-S.)
| | - Jorge Rojas-Serrano
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 06720, Mexico; (M.M.); (J.R.-S.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
- Correspondence: ; Tel.: +52-55-5487-1700 (ext. 5152)
| |
Collapse
|
12
|
Abstract
Cancer-associated thrombosis (including venous thromboembolism (VTE) and arterial events) is highly consequential for patients with cancer and is associated with worsened survival. Despite substantial improvements in cancer treatment, the risk of VTE has increased in recent years; VTE rates additionally depend on the type of cancer (with pancreas, stomach and primary brain tumours having the highest risk) as well as on individual patient's and cancer treatment factors. Multiple cancer-specific mechanisms of VTE have been identified and can be classified as mechanisms in which the tumour expresses proteins that alter host systems, such as levels of platelets and leukocytes, and in which the tumour expresses procoagulant proteins released into the circulation that directly activate the coagulation cascade or platelets, such as tissue factor and podoplanin, respectively. As signs and symptoms of VTE may be non-specific, diagnosis requires clinical assessment, evaluation of pre-test probability, and objective diagnostic testing with ultrasonography or CT. Risk assessment tools have been validated to identify patients at risk of VTE. Primary prevention of VTE (thromboprophylaxis) has long been recommended in the inpatient and post-surgical settings, and is now an option in the outpatient setting for individuals with high-risk cancer. Anticoagulant therapy is the cornerstone of therapy, with low molecular weight heparin or newer options such as direct oral anticoagulants. Personalized treatment incorporating risk of bleeding and patient preferences is essential, especially as a diagnosis of VTE is often considered by patients even more distressing than their cancer diagnosis, and can severely affect the quality of life. Future research should focus on current knowledge gaps including optimizing risk assessment tools, biomarker discovery, next-generation anticoagulant development and implementation science.
Collapse
|
13
|
Monaco A, Pantaleo E, Amoroso N, Bellantuono L, Stella A, Bellotti R. Country-level factors dynamics and ABO/Rh blood groups contribution to COVID-19 mortality. Sci Rep 2021; 11:24527. [PMID: 34972836 PMCID: PMC8720090 DOI: 10.1038/s41598-021-04162-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
The identification of factors associated to COVID-19 mortality is important to design effective containment measures and safeguard at-risk categories. In the last year, several investigations have tried to ascertain key features to predict the COVID-19 mortality tolls in relation to country-specific dynamics and population structure. Most studies focused on the first wave of the COVID-19 pandemic observed in the first half of 2020. Numerous studies have reported significant associations between COVID-19 mortality and relevant variables, for instance obesity, healthcare system indicators such as hospital beds density, and bacillus Calmette-Guerin immunization. In this work, we investigated the role of ABO/Rh blood groups at three different stages of the pandemic while accounting for demographic, economic, and health system related confounding factors. Using a machine learning approach, we found that the "B+" blood group frequency is an important factor at all stages of the pandemic, confirming previous findings that blood groups are linked to COVID-19 severity and fatal outcome.
Collapse
Affiliation(s)
- Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125, Bari, Italy
| | - Ester Pantaleo
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125, Bari, Italy
- Dipartimento di Scienze mediche di base, Neuroscienze e organi di senso, Piazza G. Cesare 11, 70124, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "'Aldo Moro", Via G. Amendola 173, 70125, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125, Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via A. Orabona 4, 70125, Bari, Italy
| | - Loredana Bellantuono
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125, Bari, Italy
- Dipartimento di Scienze mediche di base, Neuroscienze e organi di senso, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Alessandro Stella
- Dipartimento di Scienze biomediche e oncologia umana, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "'Aldo Moro", Via G. Amendola 173, 70125, Bari, Italy
| |
Collapse
|
14
|
Guman NAM, van Geffen RJ, Mulder FI, van Haaps TF, Hovsepjan V, Labots M, Cirkel GA, Y. F. L. de Vos F, ten Tije AJ, Beerepoot LV, Tjan‐Heijnen VCG, van Laarhoven HWM, Hamberg P, Vulink AJE, Los M, Zwinderman AH, Ferwerda B, Lolkema MPJK, Steeghs N, Büller HR, Kamphuisen PW, van Es N. Evaluation of the Khorana, PROTECHT, and 5-SNP scores for prediction of venous thromboembolism in patients with cancer. J Thromb Haemost 2021; 19:2974-2983. [PMID: 34409743 PMCID: PMC9291564 DOI: 10.1111/jth.15503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The Khorana score is a validated tool to identify cancer patients at higher risk of venous thromboembolism (VTE). OBJECTIVE We compared its predictive performance to that of the clinical PROTECHT and the polygenic 5-SNP scores in patients who participated in the Dutch CPCT-02 study. PATIENTS/METHODS Data on VTE and its risk factors were retrospectively collected for 2729 patients with advanced stage solid tumors planned for systemic cancer treatment. Patients were followed for 6 months. Overall discriminatory performance of the scores was evaluated by time-dependent c-indices. The scores were additionally evaluated dichotomously in competing risk models. RESULTS A total of 160 (5.9%) patients developed VTE during follow-up. Time-dependent c-indices at 6 months for the Khorana, PROTECHT, and 5-SNP scores were 0.57 (95% confidence interval [CI]: 0.55-0.60), 0.60 (95% CI: 0.57-0.62), and 0.54 (95% CI: 0.51-0.57), respectively. The dichotomous scores classified 9.6%, 16.8%, and 9.5% as high-risk, respectively. VTE risk was about 2-fold higher among high-risk patients than low-risk patients for the Khorana (subdistribution hazard ratio [SHR] 1.9, 95% CI: 1.3-3.0), PROTECHT (SHR 2.1, 95% CI: 1.5-3.0), and 5-SNP scores (SHR 1.7, 95% CI: 1.03-2.8). The sensitivity at 6 months was 16.6% (95% CI: 10.5-22.7), 28.9% (95% CI: 21.5-36.3), and 14.9% (95% CI: 8.5-21.2), respectively. CONCLUSIONS Performance of the PROTECHT or 5-SNP score was not superior to that of the Khorana score. The majority of cancer patients who developed VTE during 6-month follow-up were not identified by these scores. Future directions for studies on cancer-associated VTE prediction may include combined clinical-genetic scores.
Collapse
Affiliation(s)
- Noori A. M. Guman
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Internal MedicineTergooi HospitalHilversumthe Netherlands
| | - Roos J. van Geffen
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| | - Frits I. Mulder
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Internal MedicineTergooi HospitalHilversumthe Netherlands
| | - Thijs F. van Haaps
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| | - Vahram Hovsepjan
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| | - Mariette Labots
- Department of Medical OncologyCancer Center AmsterdamAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Geert A. Cirkel
- Department of Internal MedicineMeander Medical CenterAmersfoortthe Netherlands
| | - Filip Y. F. L. de Vos
- Department of Medical OncologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Laurens V. Beerepoot
- Department of Internal MedicineElisabeth‐Tweesteden HospitalTilburgthe Netherlands
| | | | - Hanneke W. M. van Laarhoven
- Department of Medical OncologyCancer Center AmsterdamAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Department of Medical OncologyAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| | - Paul Hamberg
- Department of Internal MedicineFranciscus Gasthuis & VlietlandRotterdam‐Schiedamthe Netherlands
| | | | - Maartje Los
- Department of Internal MedicineSt Antonius HospitalNieuwegeinthe Netherlands
| | - Aeilko H. Zwinderman
- Department of Clinical Epidemiology, Biostatistics and BioinformaticsAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Bart Ferwerda
- Department of Clinical Epidemiology, Biostatistics and BioinformaticsAmsterdam University Medical CenterAmsterdamthe Netherlands
| | | | - Neeltje Steeghs
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamthe Netherlands
| | - Harry R. Büller
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| | - Pieter W. Kamphuisen
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
- Department of Internal MedicineTergooi HospitalHilversumthe Netherlands
| | - Nick van Es
- Department of Vascular MedicineAmsterdam Cardiovascular ScienceAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
15
|
Natae SF, Kósa Z, Sándor J, Merzah MA, Bereczky Z, Pikó P, Ádány R, Fiatal S. The Higher Prevalence of Venous Thromboembolism in the Hungarian Roma Population Could Be Due to Elevated Genetic Risk and Stronger Gene-Environmental Interactions. Front Cardiovasc Med 2021; 8:647416. [PMID: 34765649 PMCID: PMC8576195 DOI: 10.3389/fcvm.2021.647416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Interactions between genetic and environmental risk factors (GxE) contribute to an increased risk of venous thromboembolism (VTE). Understanding how these factors interact provides insight for the early identification of at-risk groups within a population and creates an opportunity to apply appropriate preventive and curative measures. Objective: To estimate and compare GxE for VTE risk in the general Hungarian and Roma populations. Methods: The study was based on data extracted from a database consisting of results previously obtained from a complex health survey with three pillars (questionnaire-based, physical, and laboratory examinations) involving 406 general Hungarian and 395 Roma subjects. DNA was genotyped for rs121909567 (SERPINC1), rs1799963 (F2), rs2036914 (F11), rs2066865 (FGG), rs6025 (F5), and rs8176719 (ABO) polymorphisms. After allele frequency comparisons, the odds ratio (OR) was calculated for individual SNPs. Furthermore, genetic risk scores (weighted GRS, unweighted GRS) were computed to estimate the joint effect of the genetic factors. Multivariable linear regression analysis was applied to test the impact of GxE on VTE risk after interaction terms were created between genetic and VTE risk factors [diabetes mellitus (DM), cancer, chronic kidney diseases (CKD), coronary artery diseases (CAD), migraine, depression, obesity, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein (HDL-C), triglyceride (TG), and smoking]. Results: Interestingly, the rs121909567 (SERPINC1, ATBp3 mutation) SNP was not present in the general population at all. However, the risk allele frequency was 1% among the Roma population, which might suggest a founder effect in this minority. This polymorphism multiplicatively interacted with CAD, CKD, cancer, DM, depression, migraine, and obesity. Even though interactions were not statistically significant, the trend of interaction showed the probability of an incremental VTE risk among the Roma population. The risk of VTE was 4.7 times higher (p > 0.05) for Roma subjects who had ≥3 wGRS (median value) compared with individuals having lower wGRS values but lower for the general subjects (OR = 3.1 × 10−8). Additionally, the risk of VTE was 6.6 times higher in the Roma population that had ≥3 risk alleles (median value) than in individuals with the 0–1 risk allele, and the overall risk was much higher for the Roma population (OR = 6.6; p > 0.05) than for the general Hungarian population (OR = 1.5; p > 0.05). Five positive and significant GxE interactions were identified in the Roma population. The risk of VTE was higher among depressive Roma subjects who carried the risk variant rs2036914 (β = 0.819, p = 0.02); however, this interaction was not significant for the general subjects. The joint presence of high levels of LDL-C and rs2066865 (FGG) increased the VTE risk only among Roma individuals (β = 0.389, p = 0.002). The possibility of VTE risk increment, as a result of a multiplicative interaction between rs8176719 (ABO) and cancer, was identified, which was higher for the Roma population (β = 0.370, p < 0.001) than for the general population (β = −0.042, p = 0.6). The VTE risk increased in the Roma population (β = 0.280, p = 0.001), but was higher in the general population (β = 0.423, p = 0.001) as a result of the multiplicative interaction between CAD and rs2036914 (F11). The presence of a multiplicative interaction between rs2066865 (FGG) and CAD increased the VTE risk for the Roma population (β = 0.143, p = 0.046) but not for the general population (β = −0.329, p < 0.001). Conclusions: rs121909567 (SERPINC1, ATBp3) was confirmed as a founder mutation in the Roma population. Our study revealed some evidence on the burden of the joint presence of genetic and environmental risk factors on VTE, although the finding is highly subjected to the selection and observational biases due to the very small number of VTE cases and the observational nature of the study design, respectively. As a result of higher genetic load and GxE interactions, this minority Roma population is at higher risk of VTE than the general Hungarian population. Thus, our results suggest the need for an intensive search for the rs121909567 (SERPINC1; ATBp3) founder mutation, which might be an important factor for the assessment of thrombotic disease susceptibility among the Roma population. In addition, we strongly recommend further studies among a large number of VTE cases to explore the more precise impact of genetic and environmental risk factors on VTE in the study populations.
Collapse
Affiliation(s)
- Shewaye Fituma Natae
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsigmond Kósa
- Department of Health Methodology and Public Health, Faculty of Health, University of Debrecen, Nyíregyháza, Hungary
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mohammed Abdulridha Merzah
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Pikó
- Magyar Tudományos Akadémia-Debreceni Egyetem (MTA-DE) Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary.,Magyar Tudományos Akadémia-Debreceni Egyetem (MTA-DE) Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Skille H, Paulsen B, Hveem K, Severinsen MT, Gabrielsen ME, Kristensen SR, Næss IA, Hindberg K, Tjønneland A, Brækkan SK, Hansen JB. Prothrombotic genotypes and risk of venous thromboembolism in occult cancer. Thromb Res 2021; 205:17-23. [PMID: 34237679 DOI: 10.1016/j.thromres.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies have reported that the combination of some prothrombotic genotypes and overt cancer yields a synergistic effect on VTE risk. Whether individual prothrombotic genotypes or number of risk alleles in a genetic risk score (GRS) affect VTE risk in occult cancer have not been addressed. The aim of this study was to investigate the joint effect of five prothrombotic genotypes and occult cancer on VTE risk. METHODS Cases with incident VTE (n = 1566) and a subcohort (n = 14,537) were sampled from the Scandinavian Thrombosis and Cancer Cohort (1993-2012). Five single nucleotide polymorphisms previously reported in a GRS were genotyped: ABO (rs8176719), F5 (rs6025), F2 (rs1799963), FGG (rs2066865) and F11 (rs2036914). Hazard ratios (HRs) for VTE by individual SNPs and GRS were estimated according to non-cancer and occult cancer (one year preceding a cancer diagnosis) exposure. RESULTS Occult cancer occurred in 1817 subjects, and of these, 93 experienced a VTE. The VTE risk was 4-fold higher (HR 4.05, 95% CI 3.28-5.00) in subjects with occult cancer compared with those without cancer. Among subjects with occult cancer, those with VTE had a higher proportion of prothrombotic and advanced cancers than those without VTE. The VTE risk increased according to individual prothrombotic genotypes and GRS in cancer-free subjects, while no such effect was observed in subjects with occult cancer (HR for ≥4 versus ≤1 risk alleles in GRS: 1.14, 95% CI 0.61-2.11). CONCLUSIONS Five well-established prothrombotic genotypes, individually or combined, were not associated with increased risk of VTE in individuals with occult cancer.
Collapse
Affiliation(s)
- Hanne Skille
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Benedikte Paulsen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Marianne T Severinsen
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Søren R Kristensen
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Clinical Biochemistry, Aalborg University hospital, Aalborg, Denmark
| | - Inger Anne Næss
- Department of Rheumatology, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hindberg
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sigrid K Brækkan
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|