1
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zu R, Ren H, Yin X, Zhang X, Rao L, Xu P, Wang D, Li Y, Luo H. The FLNA Gene in Tumour-Educated Platelets Can Be Utilised to Identify High-Risk Populations for NSCLCs. J Cell Mol Med 2025; 29:e70544. [PMID: 40208200 PMCID: PMC11984322 DOI: 10.1111/jcmm.70544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Selective screening of the population based on NSCLC risk is an effective technique for minimising overdiagnosis and overtreatment. Platelets and the components can be used as liquid-biopsy markers, potentially assessing the risk of NSCLC, which are easily deployed in clinical applications. Platelet RNA sequencing datasets were analysed to identify specific genes derived from NSCLC patients and healthy donors. Then, expressions of the selected gene were validated in a clinical trial. Not only the availability of the specific gene in differentiating NSCLC patients from healthy donors but also from patients with benign nodules was estimated respectively. Finally, the values of the specific TEP-gene in metastasis and survival prognosis were also evaluated. FLNA was selected based on the GSE datasets, of which mRNA expression levels were higher in platelets from NSCLC patients than in healthy donors and also higher than in benign patients. To discriminate the malignant patients from the healthy individuals, FLNA got an AUC for the ROC curve of 0.716. When discriminating from the benign individuals, FLNA got an AUC of 0.705. In addition, an AUC of 0.595 was found when the metastatic group was distinguished from the non-metastatic group using the relative quantitative results of FLNA, and it seemed that the high-FLNA-expression group had a poorer long-term survival rate than the low-expression group. These findings suggested that high expression of FLNA in TEPs may indicate the incidence and metastasis of NSCLC and serve as a biomarker for high-risk estimation for NSCLC.
Collapse
Affiliation(s)
- Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Xing Yin
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Lubei Rao
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Yuping Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
3
|
Ceron-Hernandez J, Martinez-Navajas G, Sanchez-Manas JM, Molina MP, Xie J, Aznar-Peralta I, Garcia-Diaz A, Perales S, Torres C, Serrano MJ, Real PJ. Oncogenic KRAS G12D Transfer from Platelet-like Particles Enhances Proliferation and Survival in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2025; 26:3264. [PMID: 40244100 PMCID: PMC11990068 DOI: 10.3390/ijms26073264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
In the tumor context, platelets play a significant role in primary tumor progression, dissemination and metastasis. Analysis of this interaction in various cancers, such as non-small cell lung cancer (NSCLC), demonstrate that platelets can both transfer and receive biomolecules (e.g. RNA and proteins) to and from the tumor at different stages, becoming tumor-educated platelets. To investigate how platelets are able to transfer oncogenic material, we developed in vitro platelet-like particles (PLPs), from a differentiated MEG-01 cell line, that stably carry RNA and protein of the KRASG12D oncogene in fusion with GFP. We co-cultured these PLPs with NSCLC H1975 tumor cells to assess their ability to transfer this material. We observed that the generated platelets were capable of stably expressing the oncogene and transferring both its RNA and protein forms to tumor cells using qPCR and imaging techniques. Additionally, we found that coculturing PLPs loaded with GFP-KRASG12D with tumor cells increased their proliferative capacity at specific PLP concentrations. In conclusion, our study successfully engineered an MEG-01 cell line to produce PLPs carrying oncogenic GFP-KRASG12D simulating the tumor microenvironment, demonstrating the efficient transfer of this oncogene to tumor cells and its significant impact on enhancing proliferation.
Collapse
Affiliation(s)
- Jorge Ceron-Hernandez
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Gonzalo Martinez-Navajas
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Jose Manuel Sanchez-Manas
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - María Pilar Molina
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
| | - Jiajun Xie
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Inés Aznar-Peralta
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
| | - Abel Garcia-Diaz
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
| | - Sonia Perales
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Carolina Torres
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Maria J. Serrano
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Molecular Pathology Lab. Intercenter Anatomical Pathology Unit, San Cecilio and Virgen de las Nieves University Hospitals, 18016 Granada, Spain
| | - Pedro J. Real
- Gene Regulation, Stem Cells and Development Group, GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (J.C.-H.); (G.M.-N.); (J.M.S.-M.); (J.X.); (S.P.); (C.T.)
- Liquid Biopsies and Cancer Interception Group, PTS, Granada GENyO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Avenida de la Ilustración 114, 18016 Granada, Spain; (M.P.M.); (I.A.-P.); (A.G.-D.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Sun Y, Li T, Ding L, Wang J, Chen C, Liu T, Liu Y, Li Q, Wang C, Huo R, Wang H, Tian T, Zhang C, Pan B, Zhou J, Fan J, Yang X, Yang W, Wang B, Guo W. Platelet-mediated circulating tumor cell evasion from natural killer cell killing through immune checkpoint CD155-TIGIT. Hepatology 2025; 81:791-807. [PMID: 38779918 DOI: 10.1097/hep.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIMS Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.
Collapse
Affiliation(s)
- Yunfan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Cell Biology, Shanghai Dunwill Medical Technology Company, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuyu Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ran Huo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Hansen FJ, Mittelstädt A, Clausen FN, Knoedler S, Knoedler L, Klöckner S, Kuchenreuther I, Mazurie J, Arnold LS, Anthuber A, Jacobsen A, Merkel S, Weisel N, Klösch B, Karabiber A, Tacyildiz I, Czubayko F, Reitberger H, Gendy AE, Brunner M, Krautz C, Wolff K, Mihai S, Neufert C, Siebler J, Grützmann R, Weber GF, David P. CD71 expressing circulating neutrophils serve as a novel prognostic biomarker for metastatic spread and reduced outcome in pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:21164. [PMID: 39256468 PMCID: PMC11387421 DOI: 10.1038/s41598-024-70916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, presenting a persisting global health burden. Neutrophils have a double-edged role in tumor progression exhibiting both pro-tumor and anti-tumor functions. CD71, also known as transferrin receptor 1, performs a critical role in cellular iron uptake and is highly expressed on proliferating cells, and especially on activated immune cells. CD71 is known to be elevated in various types of solid cancers and is associated with poor prognosis, however, the expression of CD71 on neutrophils in PDAC and its potential clinical impact is still unknown. Therefore, we analyzed CD71 on circulating neutrophils in PDAC and clinical control patients and found a significant increased expression in PDAC patients. High expression of CD71 on neutrophils in PDAC patients was associated with reduced outcome compared to low expression. CD71 on neutrophils correlated positively with the levels of proinflammatory cytokines IL-6, IFN-γ, and growth factor ligands CD40-L, and BAFF in plasma of PDAC patients. Finally, we have demonstrated that high expression of CD71 on neutrophils was also associated with an increased expression of CD39 and CD25 on circulating T-cells. Based on our findings, we hypothesize that CD71 on neutrophils is associated with tumor progression in PDAC. Further studies are required to investigate the distinct functionality of CD71 expressing neutrophils and their potential clinical application.
Collapse
Affiliation(s)
- Frederik J Hansen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anke Mittelstädt
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, Ingolstädter Landtsraße 1, 85764, Neuherberg, Germany
| | - Leonard Knoedler
- Division of Genetic Immunotherapy (LIT), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Sebastian Klöckner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Isabelle Kuchenreuther
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Johanne Mazurie
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Lisa-Sophie Arnold
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anna Anthuber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Anne Jacobsen
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Nadine Weisel
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Bettina Klösch
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Alara Karabiber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Irem Tacyildiz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Franziska Czubayko
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Helena Reitberger
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Amr El Gendy
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Kerstin Wolff
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sidonia Mihai
- Zentrallabor im Universitätsklinikum, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 12, Erlangen, Germany
| | - Clemens Neufert
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Paul David
- Department of General and Visceral Surgery, Friedrich-Alexander-University, Krankenhausstraße 12, 91054, Erlangen, Germany
| |
Collapse
|
6
|
Gao M, Dong H, Jiang S, Chen F, Fu Y, Luo Y. Activated platelet-derived exosomal LRG1 promotes multiple myeloma cell growth. Oncogenesis 2024; 13:21. [PMID: 38871685 DOI: 10.1038/s41389-024-00522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
The hypercoagulable state is a hallmark for patients with multiple myeloma (MM) and is associated with disease progression. Activated platelets secrete exosomes and promote solid tumor growth. However, the role of platelet-derived exosomes in MM is not fully clear. We aim to study the underlying mechanism of how platelet-derived exosomes promote MM cell growth. Flow cytometry, Western blot, proteome analysis, co-immunoprecipitation, immunofluorescence staining, and NOD/SCID mouse subcutaneous transplantation model were performed to investigate the role of exosomal LRG1 on multiple myeloma cell growth. Peripheral blood platelets in MM patients were in a highly activated state, and platelet-rich plasma from MM patients significantly promoted cell proliferation and decreased apoptotic cells in U266 and RPMI8226 cells. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) was significantly enriched in MM platelet-derived exosomes. Blocking LRG1 in recipient cells using LRG1 antibody could significantly eliminate the proliferation-promoting effect of platelet-derived exosomes on MM cells. And high exosomal LRG1 was associated with poor prognosis of patients with MM. Mechanistic studies revealed that LRG1 interacted with Olfactomedin 4 (OLFM4) to accelerate MM progression by activating the epithelial-to-mesenchymal transition (EMT) signaling pathway and promoting angiogenesis. Our results revealed that blocking LRG1 is a promising therapeutic strategy for the treatment of MM.
Collapse
Affiliation(s)
- Meng Gao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Jiang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
8
|
He Q, Wei C, Cao L, Zhang P, Zhuang W, Cai F. Blood cell indices and inflammation-related markers with kidney cancer risk: a large-population prospective analysis in UK Biobank. Front Oncol 2024; 14:1366449. [PMID: 38846978 PMCID: PMC11153768 DOI: 10.3389/fonc.2024.1366449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
Background Kidney cancer is a prevalent malignancy with an increasing incidence worldwide. Blood cell indices and inflammation-related markers have shown huge potential as biomarkers for predicting cancer incidences, but that is not clear in kidney cancer. Our study aims to investigate the correlations of blood cell indices and inflammation-related markers with kidney cancer risk. Methods We performed a population-based cohort prospective analysis using data from the UK Biobank. A total of 466,994 participants, free of kidney cancer at baseline, were included in the analysis. The hazard ratios (HRs) and 95% confidence intervals (CIs) for kidney cancer risk were calculated using Cox proportional hazards regression models. Restricted cubic spline models were used to investigate nonlinear longitudinal associations. Stratified analyses were used to identify high-risk populations. The results were validated through sensitivity analyses. Results During a mean follow-up of 12.4 years, 1,710 of 466,994 participants developed kidney cancer. The Cox regression models showed that 13 blood cell indices and four inflammation-related markers were associated with kidney cancer incidence. The restricted cubic spline models showed non-linear relationships with kidney cancer. Finally, combined with stratified and sensitivity analyses, we found that the mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelet distribution width (PDW), systemic immune-inflammation index (SII), and product of platelet count and neutrophil count (PPN) were related to enhanced kidney cancer risk with stable results. Conclusion Our findings identified that three blood cell indices (MCHC, RDW, and PDW) and two inflammation-related markers (SII and PPN) were independent risk factors for the incidence of kidney cancer. These indexes may serve as potential predictors for kidney cancer and aid in the development of targeted screening strategies for at-risk individuals.
Collapse
Affiliation(s)
- Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pu Zhang
- Department of Urology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
9
|
Bo Y, Lu Q, Li B, Sha R, Yu H, Miao C. The role of platelets in central hubs of inflammation: A literature review. Medicine (Baltimore) 2024; 103:e38115. [PMID: 38728509 PMCID: PMC11081549 DOI: 10.1097/md.0000000000038115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.
Collapse
Affiliation(s)
- Yan Bo
- College of Medicine, Northwest Minzu University, Lanzhou, China
| | - Qingyang Lu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR of China
| | - Beilei Li
- Department of Rehabilitation Medicine, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ren Sha
- School of Economics and Management, Henan Polytechnic University, Jiaozuo, China
| | - Haodong Yu
- School of Economic Crime Investigation, Jiangxi Police Academy, Nanchang, China
| | - Chuhan Miao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR of China
| |
Collapse
|
10
|
Wang Y, Dong A, Jin M, Li S, Duan Y. TEP RNA: a new frontier for early diagnosis of NSCLC. J Cancer Res Clin Oncol 2024; 150:97. [PMID: 38372784 PMCID: PMC10876732 DOI: 10.1007/s00432-024-05620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer (LC), which is the leading cause of tumor mortality. In recent years, compared with tissue biopsy, which is the diagnostic gold standard for tumor diagnosis, Liquid biopsy (LB) is considered to be a more minimally invasive, sensitive, and safer alternative or auxiliary diagnostic method. However, the current value of LB in early diagnosis of LC is not ideal, so it is particularly important to study the changes in blood composition during the process of tumorigenesis and find more sensitive biomarkers. PURPOSE Platelets are a type of abundant blood cells that carry a large amount of RNA. In the LC regulatory network, activated platelets play an important role in the process of tumorigenesis, development, and metastasis. In order to identify predictive liquid biopsy biomarkers for the diagnosis of NSCLC, we summarized the development and function of platelets, the interaction between platelets and tumors, the value of TEP RNA in diagnosis, prognosis, and treatment of NSCLC, and the method for detecting TEP RNA of NSCLC in this article. CONCLUSION The application of platelets in the diagnosis and treatment of NSCLC remains at a nascent stage. In addition to the drawbacks of low platelet count and complex experimental processes, the diagnostic accuracy of TEP RNA-seq for cancer in different populations still needs to be improved and validated. At present, a large number of studies have confirmed significant differences in the expression of TEP RNA in platelets between NSCLC patients and healthy individuals. Continuous exploration of the diagnostic value of TEP RNA in NSCLC is of utmost importance. The integration of NSCLC platelet-related markers with other NSCLC markers can improve current tumor diagnosis and prognostic evaluation systems, providing broad prospects in tumor screening, disease monitoring, and prognosis assessment.
Collapse
Affiliation(s)
- Yuan Wang
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Aiping Dong
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
| | - Minhan Jin
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Shirong Li
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| | - Yang Duan
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| |
Collapse
|
11
|
Li S, Lu Z, Wu S, Chu T, Li B, Qi F, Zhao Y, Nie G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat Rev Cancer 2024; 24:72-87. [PMID: 38040850 DOI: 10.1038/s41568-023-00639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/03/2023]
Abstract
Systemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis. This has led to the identification of the biological changes in platelets in the presence of tumours, the complex interactions between platelets and tumour cells during tumour progression, and the effects of platelets on antitumour therapeutic response. In this Review, we present a detailed picture of the dynamic roles of platelets in tumour development and progression as well as their use in diagnosis, prognosis and monitoring response to therapy. We also provide our view on how to overcome challenges faced by the development of precise antiplatelet strategies for safe and efficient clinical cancer therapy.
Collapse
Affiliation(s)
- Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Zefang Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Suying Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Feilong Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Ward J, Martin P. Live-imaging studies reveal how microclots and the associated inflammatory response enhance cancer cell extravasation. J Cell Sci 2023; 136:jcs261225. [PMID: 37671502 PMCID: PMC10561694 DOI: 10.1242/jcs.261225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Previous clinical studies and work in mouse models have indicated that platelets and microclots might enable the recruitment of immune cells to the pre-metastatic cancer niche, leading to efficacious extravasation of cancer cells through the vessel wall. Here, we investigated the interaction between platelets, endothelial cells, inflammatory cells, and engrafted human and zebrafish cancer cells by live-imaging studies in translucent zebrafish larvae, and show how clotting (and clot resolution) act as foci and as triggers for extravasation. Fluorescent tagging in each lineage revealed their dynamic behaviour and potential roles in these events, and we tested function by genetic and drug knockdown of the contributing players. Morpholino knockdown of fibrinogen subunit α (fga) and warfarin treatment to inhibit clotting both abrogated extravasation of cancer cells. The inflammatory phenotype appeared fundamental, and we show that forcing a pro-inflammatory, tnfa-positive phenotype is inhibitory to extravasation of cancer cells.
Collapse
Affiliation(s)
- Juma Ward
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Verta R, Saccu G, Tanzi A, Grange C, Buono L, Fagoonee S, Deregibus MC, Camussi G, Scalabrin S, Nuzzi R, Bussolati B. Phenotypic and functional characterization of aqueous humor derived extracellular vesicles. Exp Eye Res 2023; 228:109393. [PMID: 36709863 DOI: 10.1016/j.exer.2023.109393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are double membrane vesicles, abundant in all biological fluids. However, the characterization of EVs in aqueous humor (AH) is still limited. The aim of the present work was to characterize EVs isolated from AH (AH-EVs) in terms of surface markers of cellular origin and functional properties. We obtained AHs from patients with cataract undergoing surgical phacoemulsification and insertion of intraocular lenses (n = 10). Nanoparticle tracking analysis, electron microscopy, super resolution microscopy and bead-based cytofluorimetry were used to characterize EVs from AH. Subsequently, we investigated the effects of AH-EVs on viability, proliferation and wound healing of human immortalized keratinocyte (HaCaT) cells in vitro in comparison with the effect of mesenchymal stromal cell-EVs (MSC-EVs). AH-EVs had a mean size of around 100 nm and expressed the classical tetraspanins (CD9, CD63 and CD81). Super resolution microscopy revealed co-expression of CD9, CD63 and CD81. Moreover, cytofluorimetric analysis highlighted the expression of mesenchymal, stem, epithelial and endothelial markers. In the in vitro wound healing assay on HaCaT cells, AH-EVs induced a significantly faster wound repair, comparable to the effects of MSC-EVs, and promoted HaCaT cell viability and proliferation. We provide evidence, herein, of the possible AH-EV origin from stromal cells, limbal epithelial/stem cells, ciliary epithelium and corneal endothelium. In addition, we showed their in vitro proliferative and regenerative capacities.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Gabriele Saccu
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Raffaele Nuzzi
- Department of Surgical Sciences, University of Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
14
|
Xiang Y, Xiang P, Zhang L, Li Y, Zhang J. A narrative review for platelets and their RNAs in cancers: New concepts and clinical perspectives. Medicine (Baltimore) 2022; 101:e32539. [PMID: 36596034 PMCID: PMC9803462 DOI: 10.1097/md.0000000000032539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent years have witnessed a growing body of evidence suggesting that platelets are involved in several stages of the metastatic process via direct or indirect interactions with cancer cells, contributing to the progression of neoplastic malignancies. Cancer cells can dynamically exchange components with platelets in and out of blood vessels, and directly phagocytose platelets to hijack their proteome, transcriptome, and secretome, or be remotely regulated by metabolites or microparticles released by platelets, resulting in phenotypic, genetic, and functional modifications. Moreover, platelet interactions with stromal and immune cells in the tumor microenvironment lead to alterations in their components, including the ribonucleic acid (RNA) profile, and complicate the impact of platelets on cancers. A deeper understanding of the roles of platelets and their RNAs in cancer will contribute to the development of anticancer strategies and the optimization of clinical management. Encouragingly, advances in high-throughput sequencing, bioinformatics data analysis, and machine learning have allowed scientists to explore the potential of platelet RNAs for cancer diagnosis, prognosis, and guiding treatment. However, the clinical application of this technique remains controversial and requires larger, multicenter studies with standardized protocols. Here, we integrate the latest evidence to provide a broader insight into the role of platelets in cancer progression and management, and propose standardized recommendations for the clinical utility of platelet RNAs to facilitate translation and benefit patients.
Collapse
Affiliation(s)
- Yunhui Xiang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Pinpin Xiang
- Department of Laboratory Medicine, Xiping Community Health Service Center of Longquanyi District Chengdu City, Chengdu, China
| | - Liuyun Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanying Li
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Zhang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- * Correspondence: Juan Zhang, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, 32# West Second Section, First Ring Road, Qingyang District, Chengdu City, Sichuan Province 610072, China (e-mail: )
| |
Collapse
|