1
|
Tan YY, Liu J, Su QP. Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights. SENSORS (BASEL, SWITZERLAND) 2025; 25:491. [PMID: 39860861 PMCID: PMC11768609 DOI: 10.3390/s25020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Platelet cells are essential to maintain haemostasis and play a critical role in thrombosis. They swiftly respond to vascular injury by adhering to damaged vessel surfaces, activating signalling pathways, and aggregating with each other to control bleeding. This dynamic process of platelet activation is intricately coordinated, spanning from membrane receptor maturation to intracellular interactions to whole-cell responses. Live-cell imaging has become an invaluable tool for dissecting these complexes. Despite its benefits, live imaging of platelets presents significant technical challenges. This review addresses these challenges, identifying key areas in need of further development and proposing possible solutions. We also focus on the dynamic processes of platelet adhesion, activation, and aggregation in haemostasis and thrombosis, applying imaging capacities from the microscale to the nanoscale. By exploring various live imaging techniques, we demonstrate how these approaches offer crucial insights into platelet biology and deepen our understanding of these three core events. In conclusion, this review provides an overview of the imaging methods currently available for studying platelet dynamics, guiding researchers in selecting suitable techniques for specific studies. By advancing our knowledge of platelet behaviour, these imaging methods contribute to research on haemostasis, thrombosis, and platelet-related diseases, ultimately aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Yuping Yolanda Tan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; (Y.Y.T.); (J.L.)
- Heart Research Institute, Newtown, NSW 2042, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
Hong SH, Kwon SC, Lee JH, Moon S, Kim JI. Influence of Diabetes Mellitus on Postoperative Complications After Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1757. [PMID: 39596942 PMCID: PMC11595993 DOI: 10.3390/medicina60111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Total knee arthroplasty (TKA) is an effective treatment option for severe knee osteoarthritis. Understanding the impact of diabetes mellitus (DM) on postoperative outcomes is crucial for improving patient satisfaction after TKA. This study aimed to investigate the influence of DM on postoperative complications and mortality after TKA. Materials and Methods: We conducted a systematic review and meta-analysis by searching relevant studies published before December 2023 in the PubMed, EMBASE, Cochrane Library, Medline, and Web of Science databases. The assessment included demographic data, comorbidities, and postoperative complications after primary TKA for both DM and non-DM patients. The odds ratio (OR) was used to represent the estimate of risk of a specific outcome. Results: Thirty-nine studies were finally included in this meta-analysis. Patients with DM had higher rates of periprosthetic joint infection (OR: 1.71, 95% confidence interval [CI]: 1.46-2.00, p < 0.01) and prosthesis revision (OR: 1.37, 95% CI: 1.23-1.52, p < 0.01). Moreover, patients with DM showed an elevated incidence of pneumonia (OR: 1.54, 95% CI: 1.15-2.07, p < 0.01), urinary tract infection (OR: 1.86, 95% CI: 1.07-3.26, p = 0.02), and sepsis (OR: 1.61, 95% CI: 1.46-1.78, p < 0.01). Additionally, the postoperative risk of cardiovascular (OR: 2.49, 95% CI: 1.50-4.17, p < 0.01) and cerebrovascular (OR: 2.38, 95% CI: 1.48-3.81, p < 0.01) events was notably higher in patients with DM. The presence of DM increased the risk of deep vein thrombosis (OR: 1.58, 95% CI: 1.22-2.04, p < 0.01), but did not lead to an increased risk of pulmonary embolism. Most importantly, DM was associated with a higher mortality rate within 30 days after TKA (OR: 1.27, 95% CI: 1.02-1.60, p = 0.03). Conclusions: Patients with DM exhibited a higher rate of postoperative complications after TKA, and DM was associated with a higher mortality rate within 30 days after TKA. It is crucial to educate patients about the perioperative risk and develop evidence-based guidelines to prevent complications after TKA.
Collapse
Affiliation(s)
- Seok Ho Hong
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea; (S.H.H.); (S.C.K.); (J.H.L.)
| | - Seung Cheol Kwon
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea; (S.H.H.); (S.C.K.); (J.H.L.)
| | - Jong Hwa Lee
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea; (S.H.H.); (S.C.K.); (J.H.L.)
| | - Shinje Moon
- Department of Internal Medicine, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Joong Il Kim
- Department of Orthopaedic Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea; (S.H.H.); (S.C.K.); (J.H.L.)
| |
Collapse
|
3
|
Martinez-Vargas M, Courson J, Gardea L, Sen M, Yee A, Rumbaut R, Cruz MA. The impact of von Willebrand factor on fibrin formation and structure unveiled with type 3 von Willebrand disease plasma. Blood Coagul Fibrinolysis 2024; 35:256-264. [PMID: 38973517 PMCID: PMC11232922 DOI: 10.1097/mbc.0000000000001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Normally, von Willebrand factor (VWF) remains inactive unless its A1A2 domains undergo a shear stress-triggered conformational change. We demonstrated the capacity of a recombinant A2 domain of VWF to bind and to affect fibrin formation, altering the fibrin clot structure. The data indicated that VWF contains an additional binding site for fibrin in the A2 domain that plays a role in the incorporation of VWF to the polymerizing fibrin. This study is to examine the hypothesis that active plasma VWF directly influence fibrin polymerization and the structure of fibrin clots. The study used healthy and type 3 von Willebrand disease (VWD) plasma, purified plasma VWF, fibrin polymerization assays, confocal microscopy and scanning electron microscopy. The exposed A2 domain in active VWF harbors additional binding sites for fibrinogen, and significantly potentiates fibrin formation (P < 0.02). Antibody against the A2 domain of VWF significantly decreased the initial rate of change of fibrin formation (P < 0.002). Clot analyses revealed a significant difference in porosity between normal and type 3 VWD plasma (P < 0.008), further supported by scanning electron microscopy, which demonstrated thicker fibrin fibers in the presence of plasma VWF (P < 0.0003). Confocal immunofluorescence microscopy showed punctate VWF staining along fibrin fibrils, providing visual evidence of the integration of plasma VWF into the fibrin matrix. The study with type 3 VWD plasma supports the hypothesis that plasma VWF directly influences fibrin polymerization and clot structure. In addition, a conformational change in the A1A2 domains exposes a hidden fibrin(ogen) binding site, indicating that plasma VWF determines the fibrin clot structure.
Collapse
Affiliation(s)
- Marina Martinez-Vargas
- Section of Cardiovascular Research
- Department of Medicine
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
| | - Justin Courson
- Department of Medicine
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
| | - Luis Gardea
- Department of Pediatrics, Baylor College of Medicine
| | - Mehmet Sen
- University of Houston, Houston, Texas, USA
| | - Andrew Yee
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
- Department of Pediatrics, Baylor College of Medicine
| | - Rolando Rumbaut
- Department of Medicine
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
| | - Miguel A Cruz
- Section of Cardiovascular Research
- Department of Medicine
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center
| |
Collapse
|
4
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
5
|
Xia Y, Jia B, Chen Y, Wang S, Xu X. Clinical value of coagulation parameters in predicting the severity of severe fever with thrombocytopenia syndrome. Front Microbiol 2024; 15:1335664. [PMID: 38633697 PMCID: PMC11021696 DOI: 10.3389/fmicb.2024.1335664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus infection with a high lethality rate. The purpose of this study was to investigate the changes in coagulation parameters in patients with SFTS, aiming to provide clinical evidence for early diagnosis, treatment, and disease analysis. Methods A total of 40 patients with SFTS attended from April 1, 2020 to May 21, 2022 in Nanjing Drum Tower Hospital were selected and grouped according to the duration of the disease, mild and severe disease, cure and death, with 50 healthy physical examiners as controls, and the risk of severe and death disease was predicted using ROC curves. Results Comparison between the healthy, mild and severe groups revealed that PT, INR, APTT, TT, D-D and vWF levels were higher than those in the healthy control group, and FII, FIX, FX, FXI, FXII, PC and PS levels were lower than those in the healthy control group, the differences were statistically significant (p < 0.05). Comparing the results of SFTS patients with different course times, the results of Fib, FV, FVII, FVIII, FIX, FX, FXI were statistically significant (p < 0.05). Among the survived and deceased patients, the PT, INR, DD and PS results of the deceased patients were higher than those of the survived patients, and the FVIII, FIX, FXI, FXII and PC were lower than those of the survived patients. The area under the ROC curve showed that D-D had higher predictive ability for the risk of severe disease (AUROC 0.93, sensitivity and specificity at a Cut-off value of 1.50 mg/L were 90.0 and 86.5%, respectively) and the risk of death occurring (AUROC 0.84, sensitivity and specificity at a Cut-off value of 3.39 mg/L were 87.5 and 80.0%, respectively). Discussion The monitoring of the coagulation parameters in patients with SFTS is great significance for identifying the severity and death of the patient's condition, and it is of great clinical value to provide early attention, timely intervention and maximum reduction of the mortality rate for patients at risk of severe disease.
Collapse
Affiliation(s)
- Yanyan Xia
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bei Jia
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xuejing Xu
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
7
|
Hearn JI, Gardiner EE. Research and Clinical Approaches to Assess Platelet Function in Flowing Blood. Arterioscler Thromb Vasc Biol 2023; 43:1775-1783. [PMID: 37615110 DOI: 10.1161/atvbaha.123.317048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Platelet adhesion and activation is fundamental to the formation of a hemostatic response to limit loss of blood and instigate wound repair to seal a site of vascular injury. The process of platelet aggregate formation is supported by the coagulation system driving injury-proximal formation of thrombin, which converts fibrinogen to insoluble fibrin. This highly coordinated series of molecular and membranous events must be routinely achieved in flowing blood, at vascular fluid shear rates that place significant strain on molecular and cellular interactions. Platelets have long been recognized to be able to slow down and adhere to sites of vascular injury and then activate and recruit more platelets that forge and strengthen adhesive ties with the vascular wall under these conditions. It has been a major challenge for the Platelet Research Community to construct experimental conditions that allow precise definition of the molecular steps occurring under flow. This brief review will discuss work to date from our group, as well as others that has furthered our understanding of platelet function in flowing blood.
Collapse
Affiliation(s)
- James I Hearn
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Bakulina AA, Musina GR, Gavdush AA, Efremov YM, Komandin GA, Vosough M, Shpichka AI, Zaytsev KI, Timashev PS. PEG-fibrin conjugates: the PEG impact on the polymerization dynamics. SOFT MATTER 2023; 19:2430-2437. [PMID: 36930054 DOI: 10.1039/d2sm01504h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fibrin and its modifications, particularly those with functionalized polyethylene glycol (PEG), remain highly attractive as a biomaterial in drug delivery and regenerative medicine. Despite the extensive knowledge of fibrinogenesis, there is little information on the processes occurring after its modification. Previously, we found structural differences between native fibrin and its conjugates with PEG that allows us to hypothesize that a combination of methods such as terahertz (THz) pulsed spectroscopy and rheology may contribute to the characterization of gelation and reveal the effect of PEG on the polymerization dynamics. Compared to native fibrin, PEGylated fibrins had a homogenously soft surface; PEGylation also led to a significant decrease in the gelation time: from 42.75 min for native fibrin to 31.26 min and 35.09 min for 5 : 1 and 10 : 1 PEGylated fibrin, respectively. It is worth noting that THz pulsed spectroscopy makes it possible to reliably investigate only the polymerization process itself, while it does not allow us to observe statistically significant differences between the distinct PEGylated fibrin gels. The polymerization time constant of native fibrin measured by THz pulsed spectroscopy was 14.4 ± 2.8 min. However, it could not be calculated for PEGylated fibrin because the structural changes were too rapid. These results, together with those previously reported, led us to speculate that PEG-fibrin conjugates formed homogenously distributed highly water-shelled aggregates without bundling compared to native fibrin, ensuring rapid gelation and stabilization of the system without increasing its complexity.
Collapse
Affiliation(s)
- Alesia A Bakulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Guzel R Musina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Arsenii A Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
| | - Gennady A Komandin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia I Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Effect of Peptides from Plasma of Patients with Coronary Artery Disease on the Vascular Endothelial Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020238. [PMID: 36837440 PMCID: PMC10003965 DOI: 10.3390/medicina59020238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Background and Objectives: Coronary artery disease (CAD) is the foremost cause of adult disability and mortality. There is an urgent need to focus on the research of new approaches for the prevention and treatment of CAD. Materials and Methods: The effects of peptides isolated from the blood plasma of CAD patients on endothelial cell secretion using the in vitro model have been tested. Human endothelial progenitor cells (HEPCs) were incubated for 24 h with peptides isolated from the plasma of healthy subjects or patients with stable angina, progressive unstable angina, and myocardial infarction. The contents of some soluble anticoagulant as well as procoagulant mediators in HEPC culture treated with peptide pools were then compared. Results and Conclusion: The results show that peptides from the plasma of patients with myocardial infarction promote endothelial cells to release both von Willebrand factor and endothelin-1, increasing vasoconstriction and shifting hemostatic balance toward a prothrombotic state. In contrast, peptides from the plasma of patients with progressive unstable angina suppress the secretion of endothelin-1 by HEPCs, while the secretion of both von Willebrand factor and tissue plasminogen activator was increased. As can be seen from the results obtained, disease derived peptides may contribute to the homeostasis of living organisms or the progression of pathological processes.
Collapse
|