1
|
Wang C, Yue Y, Yuan B, Deng Q, Liu Y, Zhou Q. Identification of the key aroma compounds in flaxseed milk using stir bar sorptive extraction, aroma recombination, and omission tests. Food Chem 2024; 446:138782. [PMID: 38402765 DOI: 10.1016/j.foodchem.2024.138782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.
Collapse
Affiliation(s)
- Chao Wang
- College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yang Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China; College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Binhong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China
| | - Ye Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Qi Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oil Seed Processing of Ministry of Agriculture, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Wuhan 430062, China.
| |
Collapse
|
2
|
Zhang Y, Zhang R, Lu Y, Gao Y, Mao L. Effect of simulated saliva on rheological and tribological properties of oleogel-in-water HIPEs during oral processing. J Colloid Interface Sci 2024; 653:1018-1027. [PMID: 37778151 DOI: 10.1016/j.jcis.2023.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
HYPOTHESIS High internal phase emulsions (HIPEs) have great potentials in the food industry to control fat consumption. Textural perception of HIPEs during oral processing is strongly influenced by saliva, which has not been systematically investigated. Therefore, we investigated the roles of saliva in the rheological and tribological properties of HIPEs during oral processing. EXPERIMENTS HIPEs (O/W) stabilized by oleogel and a protein were fabricated. Small (SAOS) and large (LAOS) amplitude oscillatory shearing measurements and tribological tests were performed, in combination with structural characterization of the emulsions. FINDINGS Particle size and CLSM observation indicated that saliva induced coalescence of droplets by weakening the interface and more EC resulted in faster clustering. SAOS tests revealed that emulsions mixed with saliva had weaker structural strength and lower resistance to deformation. Particularly in large deformation, the HIPEs mixed with saliva presented an acceleration in the droplet-droplet structure breakdown, which led to the pronounced strain-thinning behavior and energy dissipation. Tribological curves further revealed that the corporation of saliva contributed to the release of oil to reduce friction coefficient.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Kew B, Holmes M, Liamas E, Ettelaie R, Connell SD, Dini D, Sarkar A. Transforming sustainable plant proteins into high performance lubricating microgels. Nat Commun 2023; 14:4743. [PMID: 37550321 PMCID: PMC10406910 DOI: 10.1038/s41467-023-40414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
With the resource-intensive meat industry accounting for over 50% of food-linked emissions, plant protein consumption is an inevitable need of the hour. Despite its significance, the key barrier to adoption of plant proteins is their astringent off-sensation, typically associated with high friction and consequently poor lubrication performance. Herein, we demonstrate that by transforming plant proteins into physically cross-linked microgels, it is possible to improve their lubricity remarkably, dependent on their volume fractions, as evidenced by combining tribology using biomimetic tongue-like surface with atomic force microscopy, dynamic light scattering, rheology and adsorption measurements. Experimental findings which are fully supported by numerical modelling reveal that these non-lipidic microgels not only decrease boundary friction by an order of magnitude as compared to native protein but also replicate the lubrication performance of a 20:80 oil/water emulsion. These plant protein microgels offer a much-needed platform to design the next-generation of healthy, palatable and sustainable foods.
Collapse
Affiliation(s)
- Ben Kew
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Melvin Holmes
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Evangelos Liamas
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Unilever Research & Development Port Sunlight, Quarry Road East, Bebington, Merseyside, CH63 3JW, UK
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
The Quality and Flavor Changes of Different Soymilk and Milk Mixtures Fermented Products during Storage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study explored the effects of two mixed fermentation methods: one was fermenting a soymilk and milk mixture by a lactic acid bacteria fermenting agent at 0.1 g/kg and 42 °C until the acidity was 70 °T, which was set as the MFSM method, and the other was fermenting milk alone by lactic acid bacteria at 42 °C for 12 h, placing it in a 4 °C refrigerator after acidification for 24 h and then mixing it with soymilk at a 1.5:1 ratio and storing the mixture at 4 °C, which was set as the SMFSM method. The quality and flavor of the soymilk and milk mixture products were investigated on the 0th, 15th and 30th days during storage. The changes in acidity, pH, number of viable bacteria, viscosity, water-holding capacity, texture, rheological properties, sensory quality and volatile flavors were determined. The results showed that compared with the fermented soymilk and milk mixtures under the MFSM method, the samples of fermented soymilk and milk mixtures under the SMFSM method showed a significant slowdown of acidification during storage, so that the sensory quality of the products was almost unaffected by acidity on the 30th day of storage. Furthermore, the number of viable bacteria was greater than 7 log cfu/mL. The water holding capacity did not change significantly until the 30th day. There was also no whey precipitation, indicating good stability. The samples in SMFSM mode had higher aromatic contents and beans during storage than the fermented soymilk and milk mixtures in MFSM mode. The rich variety of volatile flavors and the presence of acetoin, 2-heptanone, and (E,E)-3,5-octadien-2-one throughout the storage period allowed the samples to maintain a good sensory flavor during storage.
Collapse
|
5
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|