1
|
Andrews ES, Kovach TJ, Porse CC, Hacker GM, Danforth ME, Jackson BT, Niemela MK, Pakingan MJ, Novak MG. Influence of elevation on Ixodes pacificus (Acari: Ixodidae) nymph seasonality, abundance, and Borrelia infection prevalence in the Sierra Nevada foothills. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:690-699. [PMID: 40099912 DOI: 10.1093/jme/tjaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The western blacklegged tick, Ixodes pacificus Cooley and Kohls, is a significant public health concern due to its capacity to vector Borrelia burgdorferi sensu stricto (Spirochaetales: Spirochaetaceae), the causative agent of Lyme disease. To determine the influence of elevation on the seasonality and abundance of Ixodes pacificus nymphs in the Sierra Nevada foothills of California, we used a standardized flagging procedure to sample nymphs from rocks and logs at 16 sites during 2018 to 2020. We sampled a total of 4,720 rocks and logs during 168 surveillance events and collected 1,469 I. pacificus nymphs. Nymphal abundance was similar on rock and log substrates. Tick abundance and seasonality varied by elevation, with lower elevation sites exhibiting higher nymphal abundance and earlier seasonal activity. Nymphal activity started later and persisted longer into the summer months at higher elevation sites. Nymphal abundance on rocks and logs was not predictive of adult abundance the following year, as estimated by drag sampling for adult ticks along hiking trails within the nymph sampling areas. Overall, 4.9% and 1.4% of the tested nymphs were infected with Borrelia burgdorferi s.l. and B. miyamotoi, respectively. We found no relationship between elevation and B. burgdorferi s.l. infection prevalence, although fewer nymphs were tested from higher elevation sites. These findings advanced our understanding of I. pacificus nymphal abundance and distribution and helped improve assessment of public health risks associated with tick exposure in the Sierra Nevada foothills.
Collapse
Affiliation(s)
- Elizabeth S Andrews
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Tony J Kovach
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Charsey C Porse
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Gregory M Hacker
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Mary E Danforth
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Bryan T Jackson
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Michael K Niemela
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Mary-Joyce Pakingan
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| | - Mark G Novak
- Vector-Borne Disease Section, Infectious Diseases Branch, California Department of Public Health, Sacramento, CA, USA
| |
Collapse
|
2
|
Lehane Á, Mader EM, Poggi JD, McCoy KD, Gruntmeir J, Weldon CT. A scoping review of applied tick control research in North America: funding, implementation, and advancement. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:236-276. [PMID: 39739609 DOI: 10.1093/jme/tjae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Geographic ranges of ticks and tick-borne pathogens within North America are shifting due to environmental changes and human-driven activities, with species of public health concern presenting a multifaceted risk to human health. Innovative strategies and continued collaboration to control tick populations are needed to combat this growing threat. We conducted a scoping review of the literature to describe the nature of applied tick control research conducted in North America (Canada, Mexico, and the United States) to date, with the goal of describing key concepts and identifying gaps in this research area. A total of 244 articles met our inclusion criteria and were reviewed for patterns in applied tick control authorship and funding, study location, target species, and control methodology. Most studies (83.6%) were conducted exclusively in the United States and 75% focused on ticks of public health concern, principally Amblyomma americanum (Linnaeus, Acari: Ixodidae), Dermacentor variabilis (Say, Acari: Ixodidae), Ixodes scapularis Say (Acari: Ixodidae), and Rhipicephalus sanguineus (Latreille, Acari: Ixodidae). The majority of funding was provided through US federal agencies, predominantly the Centers for Disease Control and Prevention and the United States Department of Agriculture. Ixodes scapularis was the target of over 50% of identified articles, with the majority of research conducted within 3 states in the Northeast region of the U.S. Only 8.2% of included studies evaluated integrated tick management interventions. We note gaps in tick control research regarding (i) non-Ixodes medically relevant tick species, (ii) endemic range coverage, and (iii) control methodologies evaluated.
Collapse
Affiliation(s)
- Áine Lehane
- Department of Entomology, Northeast Regional Center for Excellence in Vector-Borne Diseases, Cornell University, Ithaca, NY, USA
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Emily M Mader
- Department of Entomology, Northeast Regional Center for Excellence in Vector-Borne Diseases, Cornell University, Ithaca, NY, USA
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Joseph D Poggi
- Department of Entomology, Northeast Regional Center for Excellence in Vector-Borne Diseases, Cornell University, Ithaca, NY, USA
- Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Kaci D McCoy
- Johns Hopkins Center for Communication Programs, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeff Gruntmeir
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, Southeastern Regional Center for Excellence in Vector-Borne Diseases, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Caroline T Weldon
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, West African Center of Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Stanek LW, Cascio WE, Barzyk TM, Breen MS, DeLuca NM, Griffin SM, Melnyk LJ, Minucci JM, Thomas KW, Tulve NS, Weaver CP, Cohen Hubal EA. Environmental public health research at the U.S. Environmental Protection Agency: A blueprint for exposure science in a connected world. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00720-8. [PMID: 39550492 DOI: 10.1038/s41370-024-00720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Exposure science plays an essential role in the U.S. Environmental Protection Agency's (U.S. EPA) mission to protect human health and the environment. The U.S. EPA's Center for Public Health and Environmental Assessment (CPHEA) within the Office of Research and Development (ORD) provides the exposure science needed to characterize the multifaceted relationships between people and their surroundings in support of national, regional, local and individual-level actions. Furthermore, exposure science research must position its enterprise to tackle the most pressing public health challenges in an ever-changing environment. These challenges include understanding and confronting complex human disease etiologies, disparities in the social environment, and system-level changes in the physical environment. Solutions will sustainably balance and optimize the health of people, animals, and ecosystems. Our objectives for this paper are to review the role of CPHEA exposure science research in various recent decision-making contexts, to present current challenges facing U.S. EPA and the larger exposure science field, and to provide illustrative case examples where CPHEA exposure science is demonstrating the latest methodologies at the intersection of these two motivations. This blueprint provides a foundation for applying exposomic tools and approaches to holistically understand real-world exposures so optimal environmental public health protective actions can be realized within the broader context of a One Health framework. IMPACT STATEMENT: The U.S. EPA's Center for Public Health and Environmental Assessment exposure research priorities reside at the intersection of environmental decision contexts and broad public health challenges. The blueprint provides a foundation for advancing the tools and approaches to holistically understand real-world exposures so optimal environmental protection actions can be realized. A One Health lens can help shape exposure research for maximum impact to support solutions that are transdisciplinary and must engage multiple sectors.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA.
| | - Wayne E Cascio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Timothy M Barzyk
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Michael S Breen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Nicole M DeLuca
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
- Research Triangle Institute International, Research Triangle Park, NC, 27709, USA
| | - Shannon M Griffin
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA
| | - Lisa Jo Melnyk
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Cincinnati, OH, 45268, USA
| | - Jeffrey M Minucci
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Kent W Thomas
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Nicolle S Tulve
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Christopher P Weaver
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| | - Elaine A Cohen Hubal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, 27707, USA
| |
Collapse
|
4
|
Butler RA, Papeş M, Vogt JT, Paulsen DJ, Crowe C, Trout Fryxell RT. Human risk to tick encounters in the southeastern United States estimated with spatial distribution modeling. PLoS Negl Trop Dis 2024; 18:e0011919. [PMID: 38354196 PMCID: PMC10898775 DOI: 10.1371/journal.pntd.0011919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/27/2024] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Expanding geographic distribution and increased populations of ticks has resulted in an upsurge of human-tick encounters in the United States (US), leading to an increase in tickborne disease reporting. Limited knowledge of the broadscale spatial range of tick species is heightened by a rapidly changing environment. Therefore, we partnered with the Forest Inventory and Analysis (FIA) program of the Forest Service, U.S. Department of Agriculture and used passive tick surveillance to better understand spatiotemporal variables associated with foresters encountering three tick species (Amblyomma americanum L., Dermacentor variabilis Say, and Ixodes scapularis L.) in the southeastern US. Eight years (2014-2021) of tick encounter data were used to fit environmental niche and generalized linear models to predict where and when ticks are likely to be encountered. Our results indicate temporal and environmental partitioning of the three species. Ixodes scapularis were more likely to be encountered in the autumn and winter seasons and associated with soil organic matter, vegetation indices, evapotranspiration, temperature, and gross primary productivity. By contrast, A. americanum and D. variabilis were more likely to be encountered in spring and summer seasons and associated with elevation, landcover, temperature, dead belowground biomass, vapor pressure, and precipitation. Regions in the southeast least suitable for encountering ticks included the Blue Ridge, Mississippi Alluvial Plain, and the Southern Florida Coastal Plain, whereas suitable regions included the Interior Plateau, Central Appalachians, Ozark Highlands, Boston Mountains, and the Ouachita Mountains. Spatial and temporal patterns of different tick species can inform outdoorsmen and the public on tick avoidance measures, reduce tick populations by managing suitable tick habitats, and monitoring areas with unsuitable tick habitat for potential missed encounters.
Collapse
Affiliation(s)
- Rebecca A. Butler
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mona Papeş
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - James T. Vogt
- United States Department of Agriculture Forest Service, Southern Research Station, Knoxville, Tennessee, United States of America
| | - Dave J. Paulsen
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Christopher Crowe
- United States Department of Agriculture Forest Service, Southern Research Station, Knoxville, Tennessee, United States of America
| | - Rebecca T. Trout Fryxell
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
5
|
Mohseni N, Chang M, Garcia K, Weakley M, Do T, Mir S. Development of a Syndromic Molecular Diagnostic Assay for Tick-Borne Pathogens Using Barcoded Magnetic Bead Technology. Microbiol Spectr 2023; 11:e0439522. [PMID: 37166314 PMCID: PMC10269837 DOI: 10.1128/spectrum.04395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Infectious disease diagnostics often depend on costly serological testing with poor sensitivity, low specificity, and long turnaround time. Here, we demonstrate proof of the principle for simultaneous detection of two tick-borne pathogens from a single test sample using barcoded magnetic bead technology on the BioCode 2500 system. Specific primer sets complementary to the conserved genes of Anaplasma phagocytophilum and Borrelia burgdorferi were used in PCR amplification of the target, followed by the hybridization of the resulting biotinylated PCR products with specific probes tethered to the barcoded magnetic beads for simultaneous detection, using a fluorophore with high quantum yield. The assay has an extremely high signal to background ratio, with a limit of detection (LOD) of 2.81 50% tissue culture infection dose (TCID50)/mL and 1 CFU/mL for A. phagocytophilum and B. burgdorferi, respectively. The observed LOD for gene blocks was 1.8 copies/reaction for both the pathogens. The assay demonstrated 100% positive and negative agreement on performance evaluation using patient specimens and blood samples spiked with 1 × LOD of pathogen stock. No cross-reactivity was observed with other related tick-borne pathogens and genomic DNA of human, cattle, and canine origin. The assay can be upgraded to a sensitive and cost-effective multiplex diagnostic approach that can simultaneously detect multiple clinically important tick-borne pathogens in a single sample with a short turnaround time. IMPORTANCE The low pathogen load in the tick-borne disease test samples and the lack of highly sensitive multiplex diagnostic approaches have impacted diagnosis during clinical testing and limited surveillance studies to gauge prior insight about the prevalence of tick-borne infections in a geographical area. This article demonstrates proof of the principle for simultaneous detection of two important tick-borne pathogens from a single test sample using digital barcoded magnetic bead technology. Using a fluorophore of high quantum yield, the diagnostic approach showed high sensitivity and specificity. The LOD was 1.8 genome copies per reaction for both A. phagocytophilum and B. burgdorferi. The assay can be upgraded for the detection of all clinically important tick-borne pathogens from a single patient sample with high sensitivity and specificity. The assay can provide a diagnostic answer to the clinician in a short turnaround time to facilitate speedy therapeutic intervention to infected patients and implement public health measures to prevent community spread.
Collapse
Affiliation(s)
- Nazleeen Mohseni
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mariann Chang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kathryn Garcia
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Mina Weakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Tram Do
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Sheema Mir
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
6
|
Pascoe EL, Vaughn CE, Jones MI, Barrett RH, Foley JE, Lane RS. Recovery of western black-legged tick and vertebrate populations after a destructive wildfire in an intensively-studied woodland in northern California. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2023; 48:19-36. [PMID: 37255356 DOI: 10.52707/1081-1710-48.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Despite increasing severity and frequency of wildfires, knowledge about how fire impacts the ecology of tick-borne pathogens is limited. In 2018, the River Fire burned a forest in the far-western U.S.A. where the ecology of tick-borne pathogens had been studied for decades. Forest structure, avifauna, large and small mammals, lizards, ticks, and tick-borne pathogens (Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi) were assessed after the wildfire in 2019 and 2020. Burning reduced canopy cover and eliminated the layer of thick leaf litter that hosted free-living ticks, which over time was replaced by forbs and grasses. Tick abundance and the vertebrate host community changed dramatically. Avian species adapted to cavity nesting became most prevalent, while the number of foliage-foraging species increased by 83% as vegetation regenerated. Nine mammalian species were observed on camera traps, including sentinel (black-tailed jackrabbits) and reservoir hosts (western gray squirrels) of B. burgdorferi. One Peromyscus sp. mouse was captured in 2019 but by 2020, numbers were rebounding (n=37), although tick infestations on rodents remained sparse (0.2/rodent). However, western fence lizards (n=19) hosted 8.6 ticks on average in 2020. Assays for pathogens found no B. miyamotoi in either questing or host-feeding ticks, A. phagocytophilum DNA in 4% (1/23) in 2019, and 17% (29/173) in 2020 for questing and host-feeding ticks combined, and B. burgdorferi DNA in just 1% of all ticks collected in 2020 (2/173). We conclude that a moderately severe wildfire can have dramatic impacts on the ecology of tick-borne pathogens, with changes posited to continue for multiple years.
Collapse
Affiliation(s)
- Emily L Pascoe
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A.,
| | - Charles E Vaughn
- University of California Hopland Research and Extension Center, Hopland, CA 95449, U.S.A
| | - Michael I Jones
- University of California Cooperative Extension-Mendocino County, Ukiah, CA 95482, U.S.A
| | - Reginald H Barrett
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, U.S.A
| | - Janet E Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, U.S.A
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
7
|
Drews SJ, Wendel S, Leiby DA, Tonnetti L, Ushiro-Lumb I, O'Brien SF, Lieshout-Krikke RW, Bloch EM. Climate change and parasitic risk to the blood supply. Transfusion 2023; 63:638-645. [PMID: 36565251 DOI: 10.1111/trf.17234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Steven J Drews
- Canadian Blood Services, Microbiology, Donation Policy and Studies, Edmonton, Alberta, Canada
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Silvano Wendel
- Blood Bank, Hospital Sírio-Libanês Blood Bank, São Paulo, Brazil
| | - David A Leiby
- Department of Microbiology, Immunology, & Tropical Medicine, George Washington University, Washington, DC, USA
| | - Laura Tonnetti
- American Red Cross, Scientific Affairs, Holland Laboratories for the Biomedical Sciences, Rockville, Maryland, USA
| | | | - Sheila F O'Brien
- Canadian Blood Services, Epidemiology and Surveillance, Microbiology, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryanne W Lieshout-Krikke
- Department of Medical Affairs, Corporate Staff, Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Ecology of Ixodes pacificus Ticks and Associated Pathogens in the Western United States. Pathogens 2022; 11:pathogens11010089. [PMID: 35056037 PMCID: PMC8780575 DOI: 10.3390/pathogens11010089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Lyme disease is the most important vector-borne disease in the United States and is increasing in incidence and geographic range. In the Pacific west, the western black-legged tick, Ixodes pacificus Cooley and Kohls, 1943 is an important vector of the causative agent of Lyme disease, the spirochete, Borrelia burgdorferi. Ixodes pacificus life cycle is expected to be more than a year long, and all three stages (larva, nymph, and adult) overlap in spring. The optimal habitat consists of forest cover, cooler temperatures, and annual precipitation in the range of 200–500 mm. Therefore, the coastal areas of California, Oregon, and Washington are well suited for these ticks. Immature stages commonly parasitize Western fence lizards (Sceloporus occidentalis) and gray squirrels (Sciurus griseus), while adults often feed on deer mice (Peromyscus maniculatus) and black-tailed deer (Odocoileus h. columbianus). Ixodes pacificus carry several pathogens of human significance, such as Borrelia burgdorferi, Bartonella, and Rickettsiales. These pathogens are maintained in the environment by many hosts, including small mammals, birds, livestock, and domestic animals. Although a great deal of work has been carried out on Ixodes ticks and the pathogens they transmit, understanding I. pacificus ecology outside California still lags. Additionally, the dynamic vector–host–pathogen system means that new factors will continue to arise and shift the epidemiological patterns within specific areas. Here, we review the ecology of I. pacificus and the pathogens this tick is known to carry to identify gaps in our knowledge.
Collapse
|
9
|
Hauser N, Conlon KC, Desai A, Kobziar LN. Climate Change and Infections on the Move in North America. Infect Drug Resist 2022; 14:5711-5723. [PMID: 35002262 PMCID: PMC8722568 DOI: 10.2147/idr.s305077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Climate change is increasingly recognized for its impacts on human health, including how biotic and abiotic factors are driving shifts in infectious disease. Changes in ecological conditions and processes due to temperature and precipitation fluctuations and intensified disturbance regimes are affecting infectious pathogen transmission, habitat, hosts, and the characteristics of pathogens themselves. Understanding the relationships between climate change and infectious diseases can help clinicians broaden the scope of differential diagnoses when interviewing, diagnosing, and treating patients presenting with infections lacking obvious agents or transmission pathways. Here, we highlight key examples of how the mechanisms of climate change affect infectious diseases associated with water, fire, land, insects, and human transmission pathways in the hope of expanding the analytical framework for infectious disease diagnoses. Increased awareness of these relationships can help prepare both clinical physicians and epidemiologists for continued impacts of climate change on infectious disease in the future.
Collapse
Affiliation(s)
- Naomi Hauser
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA.,Climate Adaptation Research Center, University of California, Davis, CA, USA
| | - Kathryn C Conlon
- Climate Adaptation Research Center, University of California, Davis, CA, USA.,Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA.,Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angel Desai
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA
| | - Leda N Kobziar
- Department of Natural Resources and Society, University of Idaho, Coeur d'Alene, ID, USA
| |
Collapse
|
10
|
Hahn MB, Feirer S, Monaghan AJ, Lane RS, Eisen RJ, Padgett KA, Kelly M. Modeling future climate suitability for the western blacklegged tick, Ixodes pacificus, in California with an emphasis on land access and ownership. Ticks Tick Borne Dis 2021; 12:101789. [PMID: 34280699 PMCID: PMC9379859 DOI: 10.1016/j.ttbdis.2021.101789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/14/2021] [Accepted: 06/12/2021] [Indexed: 11/19/2022]
Abstract
In the western United States, Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) is the primary vector of the agents causing Lyme disease and granulocytic anaplasmosis in humans. The geographic distribution of the tick is associated with climatic variables that include temperature, precipitation, and humidity, and biotic factors such as the spatial distribution of its primary vertebrate hosts. Here, we explore (1) how climate change may alter the geographic distribution of I. pacificus in California, USA, during the 21st century, and (2) the spatial overlap among predicted changes in tick habitat suitability, land access, and ownership. Maps of potential future suitability for I. pacificus were generated by applying climate-based species distribution models to a multi-model ensemble of climate change projections for the Representative Concentration Pathway (RCP) 4.5 (moderate emission) and 8.5 (high emission) scenarios for two future periods: mid-century (2026-2045) and end-of-century (2086-2099). Areas climatically-suitable for I. pacificus are projected to expand by 23% (mid-century RCP 4.5) to 86% (end-of-century RCP 8.5) across California, compared to the historical period (1980-2014), with future estimates of total suitable land area ranging from about 88 to 133 thousand km2, or up to about a third of California. Regions projected to have the largest area increases in suitability by end-of-century are in northwestern California and the south central and southern coastal ranges. Over a third of the future suitable habitat is on lands currently designated as open access (i.e. publicly available), and by 2100, the amount of these lands that are suitable habitat for I. pacificus is projected to more than double under the most extreme emissions scenario (from ~23,000 to >51,000 km2). Of this area, most is federally-owned (>45,000 km2). By the end of the century, 26% of all federal land in the state is predicted to be suitable habitat for I. pacificus. The resulting maps may facilitate regional planning and preparedness by informing public health and vector control decision-makers.
Collapse
Affiliation(s)
- Micah B Hahn
- Institute for Circumpolar Health Studies, University of Alaska, Anchorage, 3211 Providence Drive, Anchorage, AK 99508 USA.
| | - Shane Feirer
- Hopland Research & Extension Center, University of California Division of Agriculture and Natural Resources, 4070 University Road, Hopland, CA 95449 USA.
| | - Andrew J Monaghan
- University of Colorado Boulder, 3100 Marine Street, Boulder, CO 80309 USA.
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Hilgard Way, Berkeley, CA 95449 USA.
| | - Rebecca J Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80526 USA.
| | - Kerry A Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, CA USA.
| | - Maggi Kelly
- University of California Division of Agriculture and Natural Resources, University of California, Berkeley, 130 Hilgard Way, Berkeley, CA 95449 USA.
| |
Collapse
|