1
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Liu X, Garber A, Ryan J, Deshpande A, Ringe D, Pochapsky TC. A Model for the Solution Structure of Human Fe(II)-Bound Acireductone Dioxygenase and Interactions with the Regulatory Domain of Matrix Metalloproteinase I (MMP-I). Biochemistry 2020; 59:4238-4249. [PMID: 33135413 PMCID: PMC7768908 DOI: 10.1021/acs.biochem.0c00724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The metalloenzyme acireductone dioxygenase (ARD) shows metal-dependent physical and enzymatic activities depending upon the metal bound in the active site. The Fe(II)-bound enzyme catalyzes the penultimate step of the methionine salvage pathway, converting 1,2-dihydroxy-5-(methylthio)pent-1-en-3-one (acireductone) into formate and the ketoacid precursor of methionine, 2-keto-4-thiomethyl-2-oxobutanoate, using O2 as the oxidant. If Ni(II) is bound, an off-pathway shunt occurs, producing 3-methylthiopropionate, formate, and carbon monoxide from the same acireductone substrate. The solution structure of the Fe(II)-bound human enzyme, HsARD, is described and compared with the structures of Ni-bound forms of the closely related mouse enzyme, MmARD. Potential rationales for the different reactivities of the two isoforms are discussed. The human enzyme has been found to regulate the activity of matrix metalloproteinase I (MMP-I), which is involved in tumor metastasis, by binding the cytoplasmic transmembrane tail peptide of MMP-I. Nuclear magnetic resonance titration of HsARD with the MMP-I tail peptide permits identification of the peptide binding site on HsARD, a cleft anterior to the metal binding site adjacent to a dynamic proline-rich loop.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
| | - Abigail Garber
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
| | - Julia Ryan
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
| | - Aditi Deshpande
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
| | - Dagmar Ringe
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
- Rosenstiel Institute for Basic Biomedical Research, Brandeis University, 415 South St., Waltham MA 02454-9110 USA
| | - Thomas C. Pochapsky
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454-9110, USA
- Rosenstiel Institute for Basic Biomedical Research, Brandeis University, 415 South St., Waltham MA 02454-9110 USA
| |
Collapse
|
3
|
dBMHCC: A comprehensive hepatocellular carcinoma (HCC) biomarker database provides a reliable prediction system for novel HCC phosphorylated biomarkers. PLoS One 2020; 15:e0234084. [PMID: 32497121 PMCID: PMC7272086 DOI: 10.1371/journal.pone.0234084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC), which is associated with an absence of obvious symptoms and poor prognosis, is the second leading cause of cancer death worldwide. Genome-wide molecular biology studies should provide biological insights into HCC development. Based on the importance of phosphorylation for signal transduction, several protein kinase inhibitors have been developed that improve the survival of cancer patients. However, a comprehensive database of HCC-related phosphorylated biomarkers (HCCPMs) and novel HCCPMs prediction platform has been lacking. We have thus constructed the dBMHCC databases to provide expression profiles, phosphorylation and drug information, and evidence type; gathered information on HCC-related pathways and their involved genes as candidate HCC biomarkers; and established a system for evaluating protein phosphorylation and HCC-related biomarkers to improve the reliability of biomarker prediction. The resulting dBMHCC contains 611 notable HCC-related genes, 234 HCC-related pathways, 17 phosphorylation-related motifs and their 255 corresponding protein kinases, 5955 HCC biomarkers, and 1077 predicted HCCPMs. Methionine adenosyltransferase 2B (MAT2B) and acireductone dioxygenase 1 (ADI1), which regulate HCC development and hepatitis C virus infection, respectively, were among the top 10 HCCPMs predicted by dBMHCC. Platelet-derived growth factor receptor alpha (PDGFRA), which had the highest evaluation score, was identified as the target of one HCC drug (Regorafenib), five cancer drugs, and four non-cancer drugs. dBMHCC is an open resource for HCC phosphorylated biomarkers, which supports researchers investigating the development of HCC and designing novel diagnosis methods and drug treatments. Database URL:http://predictor.nchu.edu.tw/dBMHCC.
Collapse
|
4
|
Xiao G, Wang P, Zheng X, Liu D, Sun X. FAM83A-AS1 promotes lung adenocarcinoma cell migration and invasion by targeting miR-150-5p and modifying MMP14. Cell Cycle 2019; 18:2972-2985. [PMID: 31522616 DOI: 10.1080/15384101.2019.1664225] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence has indicated that long noncoding RNAs (lncRNAs) play pivotal roles in the processes of cancer occurrence, progression, and treatment. FAM83A-AS1 is a novel onco-lncRNA involved in various cancers. Nevertheless, the biological function and underlying mechanism of FAM83A-AS1 in lung adenocarcinoma (LUAD) remain largely unclear. In this study, we found FAM83A-AS1 to be upregulated in LUAD tissues and closely associated with tumor size, lymph node metastasis, and TNM stage. In addition, high FAM83A-AS1 expression correlated positively with a poor prognosis. Functional investigation revealed that FAM83A-AS1 promotes LUAD cell proliferation, migration, invasion and the epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. Mechanistically, FAM83A-AS1 functions as an endogenous sponge of miR-150-5p by directly targeting it, removing inhibition of MMP14, a target of miR-150-5p. Furthermore, rescue assays demonstrated that FAM83A-AS1 enhances cell migration, invasion and EMT by modulating the miR-150-5p/MMP14 pathway. Collectively, we conclude that the novel FAM83A-AS1/miR-150-5p/MMP14 axis regulates LUAD progression, suggesting an innovative therapeutic strategy for this cancer.
Collapse
Affiliation(s)
- Guodong Xiao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Peili Wang
- Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , China
| | - Xiaoqiang Zheng
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Dapeng Liu
- The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Xin Sun
- The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
5
|
Abstract
Multiple factors involving the methionine salvage pathway (MSP) and polyamine biosynthesis have been found to be involved in cancer cell proliferation, migration, invasion and metastasis. This review summarizes the relationships of the MSP enzyme acireductone dioxygenase (ARD), the ADI1 gene encoding ARD and other gene products (ADI1GP) with carcinomas and carcinogenesis. ARD exhibits structural and functional differences depending upon the metal bound in the active site. In the penultimate step of the MSP, the Fe2+ bound form of ARD catalyzes the on-pathway oxidation of acireductone leading to methionine, whereas Ni2+ bound ARD catalyzes an off-pathway reaction producing methylthiopropionate and carbon monoxide, a biological signaling molecule and anti-apoptotic. The relationship between ADI1GP, MSP and polyamine synthesis are discussed, along with possible role(s) of metal in modulating the cellular behavior of ADI1GP and its interactions with other cellular components.
Collapse
|
6
|
The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine. Cell Death Dis 2019; 10:240. [PMID: 30858354 PMCID: PMC6411897 DOI: 10.1038/s41419-019-1486-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
The 5′-methylthioadenosine (MTA) cycle-participating human acireductone dioxygenase 1 (ADI1) has been implicated as a tumor suppressor in prostate cancer, yet its role remains unclear in hepatocellular carcinoma (HCC). Here, we demonstrated a significant reduction of ADI1, either in protein or mRNA level, in HCC tissues. Additionally, higher ADI1 levels were associated with favorable postoperative recurrence-free survival in HCC patients. By altering ADI1 expression in HCC cells, a negative correlation between ADI1 and cell proliferation was observed. Cell-based and xenograft experiments were performed by using cells overexpressing ADI1 mutants carrying mutations at the metal-binding sites (E94A and H133A, respectively), which selectively disrupted differential catalytic steps, resulting in staying or leaving the MTA cycle. The results showed that the growth suppression effect was mediated by accelerating the MTA cycle. A cDNA microarray analysis followed by verification experiments identified that caveolin-1 (CAV1), a growth-promoting protein in HCC, was markedly decreased upon ADI1 overexpression. Suppression of CAV1 expression was mediated by an increase of S-adenosylmethionine (SAMe) level. The methylation status of CAV1 promoter was significantly altered upon ADI1 overexpression. Finally, a genome-wide methylation analysis revealed that ADI1 overexpression altered promoter methylation profiles in a set of cancer-related genes, including CAV1 and genes encoding antisense non-coding RNAs, long non-coding RNAs, and microRNAs, resulting in significant changes of their expression levels. In conclusion, ADI1 expression promoted MTA cycle to increase SAMe levels, which altered genome-wide promoter methylation profiles, resulting in altered gene expression and HCC growth suppression.
Collapse
|
7
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
8
|
Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W, Liu W. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation. Front Mol Neurosci 2016; 9:79. [PMID: 27630541 PMCID: PMC5005407 DOI: 10.3389/fnmol.2016.00079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Pathophysiology, Baotou Medical CollegeBaotou, China
| | - Ting Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ke Yang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Shenzhen, China
| | - Weiping Li
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China; Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| |
Collapse
|