1
|
Schwarz T, Ptok J, Damagnez M, Menne C, Alizei ES, Lang-Meli J, Maas M, Habermann D, Hoffmann D, Schulze Zur Wiesch J, Lauer GM, Kefalakes H, Cornberg M, Kraft ARM, Gliga S, Bock HH, Horn PA, Maini MK, Thimme R, Wedemeyer H, Nattermann J, Heinemann FM, Luedde T, Neumann-Haefelin C, Walker A, Timm J. HBV shows different levels of adaptation to HLA class I-associated selection pressure correlating with markers of replication. J Hepatol 2025; 82:805-815. [PMID: 39536821 DOI: 10.1016/j.jhep.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Immune responses by CD8 T cells are essential for control of HBV replication. Although selection of escape mutations in CD8 T-cell epitopes has previously been described in HBV infection, its overall influence on HBV sequence diversity and correlation with markers of HBV replication remain unclear. METHODS Whole-genome sequencing was applied to HBV isolates from 532 patients with chronic HBV infection and high-resolution HLA class I genotyping. Using a Bayesian model (HAMdetector) for identification of HLA-associated mutational states (HAMs), the frequency and location of residues under CD8 T-cell selection pressure were determined and the levels of adaptation of individual isolates were quantified. RESULTS Using previously published thresholds for the identification of HAMs, a total of 295 residues showed evidence of CD8 T-cell escape, the majority of which were located in previously unidentified epitopes. Interestingly, HAMs were highly enriched in the HBV core protein compared to all other proteins. When individual HBV isolates were compared, different levels of adaptation to HLA class I immune pressure were noted. The level of adaptation increased with patient age and correlated with markers of replication, with low levels of adaptation in HBeAg-positive infection. Furthermore, the levels of adaptation negatively correlated with HBV viral load and HBsAg levels, consistent with high levels of HLA class I-associated selection pressure in patients with low replication levels. CONCLUSIONS HBV sequence diversity is shaped by HLA class I-associated selection pressure with the HBV core protein being a predominant target of selection. Importantly, different levels of adaptation to immune pressure were observed between HBV infection stages, which need to be considered in the context of T-cell-based therapies. IMPACT AND IMPLICATIONS The immune response mediated by CD8 T cells plays a critical role in controlling HBV infection and shows promise for therapeutic strategies aimed at achieving a functional cure. This study demonstrates that mutational escape within CD8 T-cell epitopes is common in HBV and represents a key factor in the failure of immune control. Notably, the HBV core protein emerges as the primary target of CD8 T-cell selection pressure. Additionally, the observed correlation between HBV adaptation levels and viral replication markers indicates that CD8 T-cell immunity may influence transitions between phases of chronic HBV infection.
Collapse
Affiliation(s)
- Tatjana Schwarz
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Ptok
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Maximilian Damagnez
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Christopher Menne
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Lang-Meli
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michelle Maas
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Smaranda Gliga
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Robert Thimme
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Walker
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Walker A, Schwarz T, Brinkmann-Paulukat J, Wisskirchen K, Menne C, Alizei ES, Kefalakes H, Theissen M, Hoffmann D, Schulze zur Wiesch J, Maini MK, Cornberg M, Kraft ARM, Keitel V, Bock HH, Horn PA, Thimme R, Wedemeyer H, Heinemann FM, Luedde T, Neumann-Haefelin C, Protzer U, Timm J. Immune escape pathways from the HBV core 18-27 CD8 T cell response are driven by individual HLA class I alleles. Front Immunol 2022; 13:1045498. [PMID: 36439181 PMCID: PMC9686862 DOI: 10.3389/fimmu.2022.1045498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background and aims There is growing interest in T cell-based immune therapies for a functional cure of chronic HBV infection including check-point inhibition, T cell-targeted vaccines or TCR-grafted effector cells. All these approaches depend on recognition of HLA class I-presented viral peptides. The HBV core region 18-27 is an immunodominant target of CD8+ T cells and represents the prime target for T cell-based therapies. Here, a high-resolution analysis of the core18-27 specific CD8+ T cell and the selected escape pathways was performed. Methods HLA class I typing and viral sequence analyses were performed for 464 patients with chronic HBV infection. HBV-specific CD8+ T-cell responses against the prototype and epitope variants were characterized by flow cytometry. Results Consistent with promiscuous presentation of the core18-27 epitope, antigen-specific T cells were detected in patients carrying HLA-A*02:01, HLA-B*35:01, HLA-B*35:03 or HLA-B*51:01. Sequence analysis confirmed reproducible selection pressure on the core18-27 epitope in the context of these alleles. Interestingly, the selected immune escape pathways depend on the presenting HLA-class I-molecule. Although cross-reactive T cells were observed, some epitope variants achieved functional escape by impaired TCR-interaction or disturbed antigen processing. Of note, selection of epitope variants was exclusively observed in HBeAg negative HBV infection and here, detection of variants associated with significantly greater magnitude of the CD8 T cell response compared to absence of variants. Conclusion The core18-27 epitope is highly variable and under heavy selection pressure in the context of different HLA class I-molecules. Some epitope variants showed evidence for impaired antigen processing and reduced presentation. Viruses carrying such escape substitutions will be less susceptible to CD8+ T cell responses and should be considered for T cell-based therapy strategies.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tatjana Schwarz
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Janine Brinkmann-Paulukat
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Wisskirchen
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Christopher Menne
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helenie Kefalakes
- Institute of Virology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Martin Theissen
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Julian Schulze zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Site Hamburg, Hamburg, Germany
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Anke RM Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans H. Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover, Hannover, Germany
| | - Falko M. Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Site Munich, Munich, Germany
| | - Jörg Timm
- Institute of Virology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Wang G, Wan H, Jian X, Li Y, Ouyang J, Tan X, Zhao Y, Lin Y, Xie L. INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5798356. [PMID: 32626747 PMCID: PMC7315274 DOI: 10.1155/2020/5798356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/30/2022]
Abstract
In silico T-cell epitope prediction plays an important role in immunization experimental design and vaccine preparation. Currently, most epitope prediction research focuses on peptide processing and presentation, e.g., proteasomal cleavage, transporter associated with antigen processing (TAP), and major histocompatibility complex (MHC) combination. To date, however, the mechanism for the immunogenicity of epitopes remains unclear. It is generally agreed upon that T-cell immunogenicity may be influenced by the foreignness, accessibility, molecular weight, molecular structure, molecular conformation, chemical properties, and physical properties of target peptides to different degrees. In this work, we tried to combine these factors. Firstly, we collected significant experimental HLA-I T-cell immunogenic peptide data, as well as the potential immunogenic amino acid properties. Several characteristics were extracted, including the amino acid physicochemical property of the epitope sequence, peptide entropy, eluted ligand likelihood percentile rank (EL rank(%)) score, and frequency score for an immunogenic peptide. Subsequently, a random forest classifier for T-cell immunogenic HLA-I presenting antigen epitopes and neoantigens was constructed. The classification results for the antigen epitopes outperformed the previous research (the optimal AUC = 0.81, external validation data set AUC = 0.77). As mutational epitopes generated by the coding region contain only the alterations of one or two amino acids, we assume that these characteristics might also be applied to the classification of the endogenic mutational neoepitopes also called "neoantigens." Based on mutation information and sequence-related amino acid characteristics, a prediction model of a neoantigen was established as well (the optimal AUC = 0.78). Further, an easy-to-use web-based tool "INeo-Epp" was developed for the prediction of human immunogenic antigen epitopes and neoantigen epitopes.
Collapse
Affiliation(s)
- Guangzhi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Huihui Wan
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingxing Jian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education and Key Laboratory of Carcinogenesis, National Health and Family Planning Commission, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuyu Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Xiaoxiu Tan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Lin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| |
Collapse
|