1
|
Aleman M, Benini R, Elestwani S, Vinardell T. Juvenile idiopathic epilepsy in Egyptian Arabian foals, a potential animal model of self-limited epilepsy in children. J Vet Intern Med 2024; 38:449-459. [PMID: 38041837 PMCID: PMC10800229 DOI: 10.1111/jvim.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Juvenile idiopathic epilepsy (JIE) is categorized as a generalized epilepsy. Epilepsy classification entails electrocortical characterization and localization of epileptic discharges (ED) using electroencephalography (EEG). HYPOTHESIS/OBJECTIVES Characterize epilepsy in Egyptian Arabian foals with JIE using EEG. ANIMALS Sixty-nine foals (JIE, 48; controls, 21). METHODS Retrospective study. Inclusion criteria consisted of Egyptian Arabian foals: (1) JIE group diagnosed based on witnessed or recorded seizures, and neurological and EEG findings, and (2) control group of healthy nonepileptic age-matched foals. Clinical data were obtained in 48 foals. Electroencephalography with photic stimulation was performed under standing sedation in 37 JIE foals and 21 controls. RESULTS Abnormalities on EEG were found in 95% of epileptic foals (35 of 37) and in 3 of 21 control asymptomatic foals with affected siblings. Focal ED were detected predominantly in the central vertex with diffusion into the centroparietal or frontocentral regions (n = 35). Generalization of ED occurred in 14 JIE foals. Epileptic discharges commonly were seen during wakefulness (n = 27/37 JIE foals) and sedated sleep (n = 35/37 JIE foals; 3/21 controls). Photic stimulation triggered focal central ED in 15 of 21 JIE foals. CONCLUSIONS AND CLINICAL IMPORTANCE Juvenile idiopathic epilepsy has a focal onset of ED at the central vertex with spread resulting in clinical generalized tonic-clonic seizures with facial motor activity and loss of consciousness. Electroencephalography with photic stimulation contributes to accurate phenotyping of epilepsy. Foals with this benign self-limiting disorder might serve as a naturally occurring animal model for self-limited epilepsy in children.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ruba Benini
- Division of Pediatric Neurology, Sidra MedicineDohaQatar
| | - Sami Elestwani
- Division of Pediatric Neurology, Sidra MedicineDohaQatar
| | - Tatiana Vinardell
- Equine Veterinary Medical CenterDohaQatar
- Present address:
Equine Precision TherapyMazyBelgium
| |
Collapse
|
2
|
Williams DC, Haulena M, Dennison S, Waugh L, Goldstein T, Nutter F, Bonn BV, Hoard V, Laxer KD, Buckmaster PS, Gulland FMD, Tharp B. Pinniped electroencephalography: Methodology and findings in California sea lions ( Zalophus californianus). Front Vet Sci 2023; 10:1040125. [PMID: 37065231 PMCID: PMC10102506 DOI: 10.3389/fvets.2023.1040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
This study was designed to identify abnormalities in the electroencephalograms (EEGs) recorded from stranded California sea lions (Zalophus californianus) with suspected domoic acid (DA) toxicosis. Recordings from animals presenting for non-neurological issues were also obtained to better understand the normal EEG (background activity and transient events) in this species, as, to date, studies have focused on examining natural sleep in pinnipeds. Most animals were sedated for electrode placement and EEG acquisition with some receiving antiepileptic medications or isoflurane during the procedure. A total of 103 recordings were read and scored from 0 (normal) to 3 (severely abnormal). Epileptiform discharges, consisting of spikes, sharp waves, slow waves, and/or spike waves, were present in all EEGs with scores of 1, 2, or 3. The distribution of these events over the scalp varied. While often generalized, others were lateralized over one hemisphere, bifrontal, bioccipital, and/or bitemporal, while some discharges were multifocal. Findings were different between sea lions and occasionally changed within the EEG on a given sea lion. No clinical seizures were observed during the recording but a few sea lions had findings consistent with electroencephalographic seizures. When available, supporting diagnostic results obtained from magnetic resonance imaging (MRI) and/or necropsy/histopathology were described, as well as the status of those sea lions that recovered and were released with satellite tags.
Collapse
Affiliation(s)
- D. Colette Williams
- Vet EDX, Retired Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, United States
| | | | | | - Lynnette Waugh
- UC Davis School of Veterinary Medicine, Davis, CA, United States
| | - Tracey Goldstein
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, United States
| | - Felicia Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Bill Van Bonn
- A. Watson Armour III Center for Animal Health and Welfare, Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, United States
| | - Vanessa Hoard
- Department of Neurology, The Pacific Marine Mammal Center, Laguna Beach, CA, United States
| | - Kenneth D. Laxer
- Sutter Pacific Medical Foundation, San Francisco, CA, United States
| | - Paul S. Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Frances M. D. Gulland
- The Marine Mammal Center, Sausalito, CA, United States
- Wildlife Health Center, University of California, Davis, Davis, CA, United States
| | - Barry Tharp
- Emeritus, Department of Neurology, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
3
|
Perioperative Brain Function Monitoring with Electroencephalography in Horses Anesthetized with Multimodal Balanced Anesthetic Protocol Subjected to Surgeries. Animals (Basel) 2022; 12:ani12202851. [PMID: 36290236 PMCID: PMC9597736 DOI: 10.3390/ani12202851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This study aimed to investigate the use of electroencephalography (EEG) and EEG-derived (processed) indices for detecting brain activity changes perioperatively in 12 anesthetized adult horses subjected to various surgery. Frontal electrodes together with Sedline/Root monitor were used on these horses from soon after anesthesia induction and continued until the horse first attempted to stand in recovery. The EEG waves were characterized by low-frequency high amplitude alpha, theta, and alpha waves during the isoflurane maintenance and surgery, which is commonly observed in profound anesthesia. The processed EEG indices including Patient State Index, Burst Suppression Ratio, and 95% Spectral Edge Frequency changed significantly between the stages (induction, surgery, and recovery) of anesthesia. Collectively, the presence of the slow EEG wave activities and the presence of burst suppression implies that these horses were profoundly unconscious during the anesthesia. We concluded that the use of EEG in conjunction with traditional cardiorespiratory monitoring provides clinically relevant information about perioperative brain state changes in the anesthetized horses. Abstract This study aimed to investigate the use of electroencephalography (EEG) for detecting brain activity changes perioperatively in anesthetized horses subjected to surgery. Twelve adult horses undergoing various surgeries were evaluated after premedication with xylazine and butorphanol, induction with ketamine, midazolam, and guaifenesin, and maintenance with isoflurane. The frontal EEG electrodes were placed after the horse was intubated and mechanically ventilated. The EEG data were collected continuously from Stage (S)1—transition from induction to isoflurane maintenance, S2—during surgery, S3—early recovery before xylazine sedation (0.2 mg kg IV), and S4—recovery after xylazine sedation. The Patient State Index (PSI), (Burst) Suppression Ratio (SR), and 95% Spectral Edge Frequency (SEF95) were compared across the stages. The PSI was lowest in S2 (20.8 ± 2.6) and increased to 30.0 ± 27.7 (p = 0.005) in S3. The SR increased from S1 (5.5 ± 10.7%) to S3 (32.7 ± 33.8%, p = 0.0001). The spectral power analysis showed that S3 had a significantly higher content of delta wave activity (0.1–4 Hz) in the EEG and lower relative power in the 3 Hz to 15 Hz range when compared to S1 and S2. A similar result was observed in S4, but the lower power was in a narrower range, from 3 Hz to 7 Hz, which indicate profound central nervous system depression potentiated by xylazine, despite the cessation of isoflurane anesthesia. We concluded that the use of EEG provides clinically relevant information about perioperative brain state changes of the isoflurane-anesthetized horse.
Collapse
|
4
|
Dagnall C, Khenissi L, Love E. Monitoring techniques for equine anaesthesia. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Dagnall
- Faculty of Health Sciences The University of Bristol Bristol UK
| | | | - E. Love
- Faculty of Health Sciences The University of Bristol Bristol UK
| |
Collapse
|
5
|
Stomp M, d’Ingeo S, Henry S, Cousillas H, Hausberger M. Brain activity reflects (chronic) welfare state: Evidence from individual electroencephalography profiles in an animal model. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Reliability of fNIRS for noninvasive monitoring of brain function and emotion in sheep. Sci Rep 2020; 10:14726. [PMID: 32895449 PMCID: PMC7477174 DOI: 10.1038/s41598-020-71704-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to critically assess if functional near infrared spectroscopy (fNIRS) can be profitably used as a tool for noninvasive recording of brain functions and emotions in sheep. We considered an experimental design including advances in instrumentation (customized wireless multi-distance fNIRS system), more accurate physical modelling (two-layer model for photon diffusion and 3D Monte Carlo simulations), support from neuroanatomical tools (positioning of the fNIRS probe by MRI and DTI data of the very same animals), and rigorous protocols (motor task, startling test) for testing the behavioral response of freely moving sheep. Almost no hemodynamic response was found in the extra-cerebral region in both the motor task and the startling test. In the motor task, as expected we found a canonical hemodynamic response in the cerebral region when sheep were walking. In the startling test, the measured hemodynamic response in the cerebral region was mainly from movement. Overall, these results indicate that with the current setup and probe positioning we are primarily measuring the motor area of the sheep brain, and not probing the too deeply located cortical areas related to processing of emotions.
Collapse
|
7
|
State-of-the-Art Diagnostic Methods to Diagnose Equine Spinal Disorders, With Special Reference to Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation. J Equine Vet Sci 2019; 81:102790. [PMID: 31668311 DOI: 10.1016/j.jevs.2019.102790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/21/2022]
Abstract
Spinal cord disorders are a common problem in equine medicine. However, finding the site of the lesion is challenging for veterinarians because of a lack of sensitive diagnostic methods that can assess neuronal functional integrity in horses. Although medical imaging is frequently applied to help diagnose corticospinal disorders, this approach does not reveal functional information. For the latter, transcranial magnetic stimulation (TMS) and more recently transcranial electrical stimulation (TES) can be useful. These are brain stimulation techniques that create either magnetic or electrical fields passing through the motor cortex, inducing muscular responses, which can be recorded either intramuscularly or extramuscularly by needle or surface electrodes. This permits the evaluation of the functional integrity of the spinal motor tracts and the nerve conduction pathways. The interest in TES in human medicine emerged these last years because unlike TMS, TES tends to bypass the motor cortex of the brain and predominantly relies on direct activation of corticospinal and extrapyramidal axons. Results from human medicine have indicated that TMS and TES recordings are mildly if not at all affected by sedation. Therefore, this technique can be reliably used in human patients under either sedation or full anesthesia to assess functional integrity of the corticospinal and adjunct motor tracts. This opens important new avenues in equine medicine.
Collapse
|
8
|
The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials. Exp Brain Res 2019; 237:1521-1529. [PMID: 30919011 DOI: 10.1007/s00221-019-05528-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Volatile general anesthetics are used commonly in adults and children, yet their mechanisms of action are complex and the changes in single unit firing and synaptic activity that underlie the broad decreases in neuronal activity induced by these drugs have not been well characterized. Capturing such changes throughout the anesthesia process is important for comparing the effects of different anesthetics and gaining a better understanding of their mechanisms of action and their impact on different brain regions. Using chronically implanted electrodes in the rabbit somatosensory cortex, we compared the effects of two common general anesthetics, isoflurane, and sevoflurane, on cortical neurons. Single unit activity and local field potentials (LFP) were recorded continuously before and during anesthetic delivery at 1 MAC, as well as during recovery. Our findings show that although isoflurane and sevoflurane belong to the same class of volatile general anesthetics, their effects upon cortical single units and LFP were quite different. Overall, the suppression of neuronal firing was greater and more uniform under sevoflurane. Moreover, the changes in LFP frequency bands suggest that effect of anesthesia upon beta oscillations does not necessarily depend on the level of single unit activity, but rather on the changes in GABA/glutamate neurotransmission induced by each drug.
Collapse
|
9
|
Cousillas H, Oger M, Rochais C, Pettoello C, Ménoret M, Henry S, Hausberger M. An Ambulatory Electroencephalography System for Freely Moving Horses: An Innovating Approach. Front Vet Sci 2017; 4:57. [PMID: 28512633 PMCID: PMC5411420 DOI: 10.3389/fvets.2017.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) that has been extensively studied in humans presents also a large interest for studies on animal brain processes. However, since the quality of the recordings is altered by muscular activity, most EEG recordings on animals are obtained using invasive methods with deeply implanted electrodes. This requires anesthesia and can thus only be used in laboratory or clinical settings. As EEG is a very useful tool both for detecting brain alterations due to diseases or accidents and to evaluate the arousal and attentional state of the animal, it seemed crucial to develop a tool that would make such recordings possible in the horse’s home environment, with a freely moving horse. Such a tool should neither be invasive nor cause discomforts to the horse as the usual other practice which consists, after shaving the zone, in gluing the electrodes to the skin. To fulfill these requirements, we developed a novel EEG headset adapted to the horse’s head that allows an easy and fast positioning of the electrodes and that can be used in the home environment on a freely moving horse. In this study, we show that this EEG headset allows to obtain reliable recordings, and we propose an original evaluation of an animal’s “EEG profile” that allows comparisons between individuals and situations. This EEG headset opens new possibilities of investigation on horse cognition, and it can also become a useful tool for veterinarians to evaluate cerebral disorders or check the anesthesia level during a surgery.
Collapse
Affiliation(s)
- Hugo Cousillas
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Rennes Cedex, France
| | - Martial Oger
- IETR, Université de Rennes 1, UMR CNRS 6164, Rennes Cedex, France
| | - Céline Rochais
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Station Biologique, Paimpont, France
| | - Claire Pettoello
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Station Biologique, Paimpont, France
| | - Mathilde Ménoret
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Rennes Cedex, France
| | - Séverine Henry
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Station Biologique, Paimpont, France
| | - Martine Hausberger
- Université de Rennes 1, CNRS UMR 6552 - Ethologie Animale et Humaine EthoS, Rennes Cedex, France
| |
Collapse
|
10
|
Tünsmeyer J, Hopster K, Kästner SB. Clinical Use of a Multivariate Electroencephalogram (Narcotrend) for Assessment of Anesthetic Depth in Horses during Isoflurane-Xylazine Anesthesia. Front Vet Sci 2016; 3:25. [PMID: 27014707 PMCID: PMC4794479 DOI: 10.3389/fvets.2016.00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the use of the Narcotrend electroencephalogram (EEG) monitor for the assessment of anesthetic depth in horses undergoing xylazine balanced isoflurane anesthesia. Study design Blinded experimental study. Animals Seven healthy warm-blooded horses, aged 10.6 ± 5.9 years, weighing 535 ± 55 kg. Methods Horses were anesthetized for a terminal surgical trial with xylazine, thiopentone, and guaiphenesin for induction and isoflurane and xylazine continuous rate infusion for maintenance. After surgery, an EEG was recorded and processed by the Narcotrend monitor. It displays an index [Narcotrend index (NI)] between 0 and 100, which is supposed to indicate anesthetic depth. This index was recorded and correlated with eight different end tidal (ET) isoflurane concentrations between 0.8 and 2.2 vol%. In addition, anesthetic depth was numerically scored based on common clinical signs with a score of 1 (plane “too deep”) to 4 (plane “too light”). After testing for normal distribution, both clinical scores and NI were correlated with different ET isoflurane concentrations using Spearman rank correlation. Results Correlation of NI with ET isoflurane concentrations was poor (rs = 0.24). The NI ranged between maximal 48 and minimal 13 in the horses. The clinical scores decreased with increasing ET isoflurane concentrations (rs = 0.80). They ranged from 1 to 4 in different horses at the concentrations investigated. Conclusion In this study, the NI did not seem to be useful for assessment of anesthetic depth in horses receiving isoflurane anesthesia balanced with a xylazine constant rate infusion.
Collapse
Affiliation(s)
- Julia Tünsmeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation , Hannover , Germany
| | - Klaus Hopster
- Equine Clinic, University of Veterinary Medicine Hannover Foundation , Hannover , Germany
| | - Sabine B Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany; Equine Clinic, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|