Sanders K, Galac S, Meij BP. Pituitary tumour types in dogs and cats.
Vet J 2021;
270:105623. [PMID:
33641809 DOI:
10.1016/j.tvjl.2021.105623]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
Pituitary tumours are common in dogs and are being increasingly recognized in cats. Pituitary tumours are usually classified as adenomas and should only be classified as carcinomas when there is evidence of metastatic spread of the tumour, which is rare. Despite the benign nature of most pituitary tumours, they can still compress or invade neighbouring tissues. Pituitary tumours can be functional (hormonally active) or non-functional (hormonally silent). The aim of this review was to provide an overview of the different pituitary tumour types in dogs and cats that have been reported in the literature. In dogs, the most common pituitary tumour type is the corticotroph adenoma, which can cause pituitary-dependent hypercortisolism. In cats, the most common pituitary tumour is the somatotroph adenoma, which can cause hypersomatotropism, and the second-most common is the corticotroph adenoma. A lactotroph adenoma has been described in one dog, while gonadotroph, thyrotroph and null cell adenomas have not been described in dogs or cats. Hormonally silent adenomas are likely underdiagnosed because they do not result in an endocrine syndrome. Tools used to classify pituitary tumours in humans, particularly immunohistochemistry for lineage-specific transcription factors, are likely to be useful to classify canine and feline pituitary tumours of unknown origin. Future studies are required to better understand the full range of pituitary adenoma pathology in dogs and cats and to determine whether certain adenoma subtypes behave more aggressively than others. Currently, the mechanisms that underlie pituitary tumorigenesis in dogs and cats are still largely unknown. A better understanding of the molecular background of these tumours could help to identify improved pituitary-targeted therapeutics.
Collapse