1
|
Jeon JY, Jung JH, Suk HY, Lee H, Min MS. The Asian plethodontid salamander preserves historical genetic imprints of recent northern expansion. Sci Rep 2021; 11:9193. [PMID: 33911092 PMCID: PMC8080585 DOI: 10.1038/s41598-021-88238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
The Korean Peninsula, located at the southern tip of Northeast Asia, has never been covered by ice sheets and was a temperate refugium during the Pleistocene. Karsenia koreana, the sole Asian plethodontid salamander species, occurs only on the southern half of the Korean Peninsula and is thought to have found various climatic refugia. Despite its phylogenetic and biogeographic importance, no population-level genetic analysis has been performed on this species. Here we study the population genetic structure of K. koreana using mitochondrial and microsatellite loci to understand the recent historical dispersion process that shaped its current distribution. Overall, the genetic distance between populations correlated well with the spatial distance, and the genetic structure among populations showed signs of a unilateral northward expansion from a southernmost refugium population. Given the distinct genetic structure formed among the populations, the level of historical gene flow among populations appears to have been very low. As the estimated effective population size of K. koreana was also small, these results suggest that the small, restricted populations of K. koreana are extremely vulnerable to environmental changes that may require high levels of genetic diversity to cope with. Thus, special management strategies are needed to preserve these remnant populations.
Collapse
Affiliation(s)
- Jong Yoon Jeon
- grid.31501.360000 0004 0470 5905Research Institute for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Ji-hwa Jung
- grid.31501.360000 0004 0470 5905Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Ho Young Suk
- grid.413028.c0000 0001 0674 4447Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| | - Hang Lee
- grid.31501.360000 0004 0470 5905Research Institute for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Mi-Sook Min
- grid.31501.360000 0004 0470 5905Research Institute for Veterinary Science and Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
2
|
Lucati F, Poignet M, Miró A, Trochet A, Aubret F, Barthe L, Bertrand R, Buchaca T, Calvez O, Caner J, Darnet E, Denoël M, Guillaume O, Le Chevalier H, Martínez-Silvestre A, Mossoll-Torres M, O'Brien D, Osorio V, Pottier G, Richard M, Sabás I, Souchet J, Tomàs J, Ventura M. Multiple glacial refugia and contemporary dispersal shape the genetic structure of an endemic amphibian from the Pyrenees. Mol Ecol 2020; 29:2904-2921. [PMID: 32563209 DOI: 10.1111/mec.15521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022]
Abstract
Historical factors (colonization scenarios, demographic oscillations) and contemporary processes (population connectivity, current population size) largely contribute to shaping species' present-day genetic diversity and structure. In this study, we use a combination of mitochondrial and nuclear DNA markers to understand the role of Quaternary climatic oscillations and present-day gene flow dynamics in determining the genetic diversity and structure of the newt Calotriton asper (Al. Dugès, 1852), endemic to the Pyrenees. Mitochondrial DNA did not show a clear phylogeographic pattern and presented low levels of variation. In contrast, microsatellites revealed five major genetic lineages with admixture patterns at their boundaries. Approximate Bayesian computation analyses and linear models indicated that the five lineages likely underwent separate evolutionary histories and can be tracked back to distinct glacial refugia. Lineage differentiation started around the Last Glacial Maximum at three focal areas (western, central and eastern Pyrenees) and extended through the end of the Last Glacial Period in the central Pyrenees, where it led to the formation of two more lineages. Our data revealed no evidence of recent dispersal between lineages, whereas borders likely represent zones of secondary contact following expansion from multiple refugia. Finally, we did not find genetic evidence of sex-biased dispersal. This work highlights the importance of integrating past evolutionary processes and present-day gene flow and dispersal dynamics, together with multilocus approaches, to gain insights into what shaped the current genetic attributes of amphibians living in montane habitats.
Collapse
Affiliation(s)
- Federica Lucati
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Manon Poignet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Alexandre Miró
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Audrey Trochet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France.,Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Fabien Aubret
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Association Nature En Occitanie, Maison de l'Environnement de Midi-Pyrénées, Toulouse, France
| | - Romain Bertrand
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Teresa Buchaca
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Olivier Calvez
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Jenny Caner
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Elodie Darnet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liege, Liege, Belgium
| | - Olivier Guillaume
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | | | | | | | - Víctor Osorio
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Gilles Pottier
- Association Nature En Occitanie, Maison de l'Environnement de Midi-Pyrénées, Toulouse, France
| | - Murielle Richard
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Ibor Sabás
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Jérémie Souchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Université Paul Sabatier, Moulis, France
| | - Jan Tomàs
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| | - Marc Ventura
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Spain
| |
Collapse
|
4
|
Denoël M, Drapeau L, Oromi N, Winandy L. The role of predation risk in metamorphosis versus behavioural avoidance: a sex-specific study in a facultative paedomorphic amphibian. Oecologia 2019; 189:637-645. [PMID: 30809707 DOI: 10.1007/s00442-019-04362-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
Evolutionary theory predicts the evolution of metamorphosis over paedomorphosis (the retention of larval traits at the adult stage) in response to life in unfavourable habitats and to the benefits of dispersal. Although many organisms are canalised into obligatory complex or simple life cycles, some species of newts and salamanders can express both processes (facultative paedomorphosis). Previous research highlighted the detrimental effect of fish on both metamorphic and paedomorphic phenotypes, but it remains unknown whether predation risk could induce shifts from paedomorphosis to metamorphosis, whether behavioural avoidance could be an alternative strategy to metamorphosis and whether these responses could be sex-biased. Testing these hypotheses is important because metamorphosed paedomorphs are dispersal individuals which could favour the long-term persistence of the process by breeding subsequently in more favourable waters. Therefore, we quantified the spatial behaviour and timing of the metamorphosis of facultative paedomorphic palmate newts Lissotriton helveticus in response to predation risk. We found that fish induced both male and female paedomorphs to hide more often, but behavioural avoidance was not predictive of metamorphosis. Paedomorphs did not metamorphose more in the presence of fish, yet there was an interaction between sex and predation risk in metamorphosis timing. These results improve our understanding of the lower prevalence of paedomorphs in fish environments and of the female-biased sex ratios in natural populations of paedomorphic newts. Integrating sex-dependent payoffs of polyphenisms and dispersal across habitats is therefore essential to understand the evolution of these processes in response to environmental change.
Collapse
Affiliation(s)
- M Denoël
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium.
| | - L Drapeau
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium
| | - N Oromi
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium
| | - L Winandy
- Behavioural Biology Group, Laboratory of Fish and Amphibian Ethology, Freshwater and OCeanic science Unit of reSearch (FOCUS), University of Liège (ULiège), Liège, Belgium.,Laboratoire Evolution et Diversité Biologique, CNRS, UMR 5174, Université Paul Sabatier, Toulouse, France.,Station d'Ecologie Théorique et Expérimentale, CNRS UMR 5321, Moulis, France
| |
Collapse
|
5
|
Denoël M, Ficetola GF, Sillero N, Džukić G, Kalezić ML, Vukov T, Muhovic I, Ikovic V, Lejeune B. Traditionally managed landscapes do not prevent amphibian decline and the extinction of paedomorphosis. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mathieu Denoël
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
| | - G. Francesco Ficetola
- Department of Environmental Science and Policy Università degli Studi di Milano Milan Italy
- Université Grenoble‐Alpes CNRS Laboratoire d’Écologie Alpine (LECA) Grenoble France
| | - Neftali Sillero
- Centro de Investigação em Ciências Geo‐Espaciais University of Porto Porto Portugal
| | - Georg Džukić
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Miloš L. Kalezić
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology Institute for Biological Research “Siniša Stanković” University of Belgrade Belgrade Serbia
| | - Irma Muhovic
- Montenegrin Ecologists Society Podgorica Montenegro
| | - Vuk Ikovic
- Montenegrin Ecologists Society Podgorica Montenegro
| | - Benjamin Lejeune
- Laboratory of Fish and Amphibian Ethology Behavioural Biology Group Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
- Laboratory of Oceanology Freshwater and Oceanic Science Unit of Research (FOCUS) University of Liège Liège Belgium
| |
Collapse
|