1
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
2
|
Valdetara F, Škalič M, Fracassetti D, Louw M, Compagno C, du Toit M, Foschino R, Petrovič U, Divol B, Vigentini I. Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition. Food Microbiol 2020; 90:103483. [DOI: 10.1016/j.fm.2020.103483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
|
3
|
Stadler E, Fischer U. Sanitization of Oak Barrels for Wine-A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5283-5295. [PMID: 32323983 DOI: 10.1021/acs.jafc.0c00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oak barrels form an integral part of wine production, especially that of high-quality wines where they are implemented as fermentation and aging vessels. Insufficient cleaning and sanitization of barrels can result in microbial spoilage which may have a detrimental impact on wine quality. To date, no review has been published on the various sanitization methods for wine barrels. The objective of this review is to provide an overview of the sanitization methods used in wineries from conventional techniques like the use of sulfur dioxide and steam to alternative and new approaches using ozone and high-power ultrasound. The methods' efficacies are outlined in terms of their ability to eradicate spoilage microorganisms such as Brettanomyces and acetic or lactic acid bacteria. Furthermore, their advantages and drawbacks are described together with their influence on physicochemical properties of the wood. Finally, limitations in existing knowledge are discussed and areas that merit further research are identified.
Collapse
Affiliation(s)
- Engela Stadler
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Technical University of Kaiserslautern, Faculty of Chemistry, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| | - Ulrich Fischer
- Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Technical University of Kaiserslautern, Faculty of Chemistry, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Cibrario A, Avramova M, Dimopoulou M, Magani M, Miot-Sertier C, Mas A, Portillo MC, Ballestra P, Albertin W, Masneuf-Pomarede I, Dols-Lafargue M. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLoS One 2019; 14:e0222749. [PMID: 31851678 PMCID: PMC6919574 DOI: 10.1371/journal.pone.0222749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.
Collapse
Affiliation(s)
- Alice Cibrario
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Marta Avramova
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Maria Dimopoulou
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environments, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maura Magani
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Albert Mas
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d‘Enologia. Universitat Rovira i Virgili. C/ Marcel·lí Domingo, Tarragona, Spain
| | - Maria C. Portillo
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d‘Enologia. Universitat Rovira i Virgili. C/ Marcel·lí Domingo, Tarragona, Spain
| | - Patricia Ballestra
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Warren Albertin
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- ENSCBP, Bordeaux INP, Pessac, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- ENSCBP, Bordeaux INP, Pessac, France
| |
Collapse
|
5
|
Influence of physical and chemical barrel sanitization treatments on the volatile composition of toasted oak wood. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03417-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Abstract
Brettanomyces bruxellensis has been described as the principal spoilage yeast in the winemaking industry. To avoid its growth, wine is supplemented with SO2, which has been questioned due to its potential harm to health. For this reason, studies are being focused on searching for, ideally, natural new antifungals. On the other hand, it is known that in wine production there are a variety of microorganisms, such as yeasts and bacteria, that are possible biological controls. Thus, it has been described that some microorganisms produce antimicrobial peptides, which might control yeast and bacteria populations. Our laboratory has described the Candida intermedia LAMAP1790 strain as a natural producer of antimicrobial compounds against food spoilage microorganisms, as is B. bruxellensis, without affecting the growth of S. cerevisiae. We have demonstrated the proteinaceous nature of the antimicrobial compound and its low molecular mass (under 10 kDa). This is the first step to the possible use of C. intermedia as a selective bio-controller of the contaminant yeast in the winemaking industry.
Collapse
|
7
|
Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the wine-spoilage yeast Brettanomyces bruxellensis. Antonie van Leeuwenhoek 2018; 112:297-304. [PMID: 30187229 DOI: 10.1007/s10482-018-1159-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Brettanomyces bruxellensis negatively impacts on the sensorial quality of wine by producing phenolic compounds associated with unpleasant odors. Thus, the control of this spoilage yeast is a critical factor during the winemaking process. A recent approach used to biocontrol undesired microorganisms is the use of yeast released antimicrobial peptides (AMPs), but this strategy has been poorly applied to wine-related microorganisms. The aim of this study was to evaluate the antifungal capacity of Candida intermedia LAMAP1790 against wine-spoilage strains of B. bruxellensis and fermentative strains of Saccharomyces cerevisiae, and also to determine the chemical nature of the compound. The exposure of strains to the supernatant of C. intermedia saturated cultures showed antifungal activity against B. bruxellensis, without affecting the growth of S. cerevisiae. By fractionation and concentration of C. intermedia supernatants, it was determined that the antifungal activity was related to the presence of heat-labile peptides with molecular masses under 5 kDa. To our knowledge, this is the first report of AMPs secreted by C. intermedia that control B. bruxellensis. This could lead to the development of new biocontrol strategies against this wine-spoilage yeast.
Collapse
|
8
|
Avramova M, Vallet-Courbin A, Maupeu J, Masneuf-Pomarède I, Albertin W. Molecular Diagnosis of Brettanomyces bruxellensis' Sulfur Dioxide Sensitivity Through Genotype Specific Method. Front Microbiol 2018; 9:1260. [PMID: 29942296 PMCID: PMC6004410 DOI: 10.3389/fmicb.2018.01260] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 11/13/2022] Open
Abstract
The yeast species Brettanomyces bruxellensis is associated with important economic losses due to red wine spoilage. The most common method to prevent and/or control B. bruxellensis spoilage in winemaking is the addition of sulfur dioxide into must and wine. However, recently, it was reported that some B. bruxellensis strains could be tolerant to commonly used doses of SO2. In this work, B. bruxellensis response to SO2 was assessed in order to explore the relationship between SO2 tolerance and genotype. We selected 145 isolates representative of the genetic diversity of the species, and from different fermentation niches (roughly 70% from grape wine fermentation environment, and 30% from beer, ethanol, tequila, kombucha, etc.). These isolates were grown in media harboring increasing sulfite concentrations, from 0 to 0.6 mg.L-1 of molecular SO2. Three behaviors were defined: sensitive strains showed longer lag phase and slower growth rate and/or lower maximum population size in presence of increasing concentrations of SO2. Tolerant strains displayed increased lag phase, but maximal growth rate and maximal population size remained unchanged. Finally, resistant strains showed no growth variation whatever the SO2 concentrations. 36% (52/145) of B. bruxellensis isolates were resistant or tolerant to sulfite, and up to 43% (46/107) when considering only wine isolates. Moreover, most of the resistant/tolerant strains belonged to two specific genetic groups, allowing the use of microsatellite genotyping to predict the risk of sulfur dioxide resistance/tolerance with high reliability (>90%). Such molecular diagnosis could help the winemakers to adjust antimicrobial techniques and efficient spoilage prevention with minimal intervention.
Collapse
Affiliation(s)
- Marta Avramova
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Amélie Vallet-Courbin
- Microflora-ADERA, Institut des Sciences de la Vigne et du Vin, Unité de Rrecherche Œnologie EA 4577, Bordeaux, France
| | - Julie Maupeu
- Microflora-ADERA, Institut des Sciences de la Vigne et du Vin, Unité de Rrecherche Œnologie EA 4577, Bordeaux, France
| | - Isabelle Masneuf-Pomarède
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,Bordeaux Sciences Agro, Gradignan, France
| | - Warren Albertin
- USC 1366 INRA, Institut des Sciences de la Vigne et du Vin, Unité de Recherche Œnologie EA 4577, University of Bordeaux, Bordeaux, France.,École Nationale Supérieure de Chimie de Biologie et de Physique, Institut Polytechnique de Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Two Decades of “Horse Sweat” Taint and Brettanomyces Yeasts in Wine: Where do We Stand Now? BEVERAGES 2018. [DOI: 10.3390/beverages4020032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Adhesion properties and surface hydrophobicity of Pichia manshurica strains isolated from organic wines. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine. Appl Microbiol Biotechnol 2017; 102:569-576. [PMID: 29189899 PMCID: PMC5756568 DOI: 10.1007/s00253-017-8666-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 11/04/2022]
Abstract
Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the “Bretta” character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF and MLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.
Collapse
|
12
|
Agnolucci M, Tirelli A, Cocolin L, Toffanin A. Brettanomyces bruxellensis yeasts: impact on wine and winemaking. World J Microbiol Biotechnol 2017; 33:180. [PMID: 28936776 DOI: 10.1007/s11274-017-2345-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/16/2017] [Indexed: 01/26/2023]
Abstract
Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.
Collapse
Affiliation(s)
- Monica Agnolucci
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy.
| | - Antonio Tirelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano, Via Celoria 2, Milano, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Annita Toffanin
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| |
Collapse
|
13
|
Romano D, Valdetara F, Zambelli P, Galafassi S, De Vitis V, Molinari F, Compagno C, Foschino R, Vigentini I. Cloning the putative gene of vinyl phenol reductase of Dekkera bruxellensis in Saccharomyces cerevisiae. Food Microbiol 2016; 63:92-100. [PMID: 28040186 DOI: 10.1016/j.fm.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/03/2016] [Accepted: 11/01/2016] [Indexed: 11/27/2022]
Abstract
Vinylphenol reductase of Dekkera bruxellensis, the characteristic enzyme liable for "Brett" sensory modification of wine, has been recently recognized to belong to the short chain dehydrogenases/reductases family. Indeed, a preliminary biochemical characterisation has conferred to the purified protein a dual significance acting as superoxide dismutase and as a NADH-dependent reductase. The present study aimed for providing a certain identification of the enzyme by cloning the VPR gene in S. cerevisiae, a species not producing ethyl phenols. Transformed clones of S. cerevisiae resulted capable of expressing a biologically active form of the heterologous protein, proving its role in the conversion of 4-vinyl guaiacol to 4-ethyl guaiacol. A VPR specific protein activity of 9 ± 0.6 mU/mg was found in crude extracts of S. cerevisiae recombinant strain. This result was confirmed in activity trials carried out with the protein purified from transformant cells of S. cerevisiae by a his-tag purification approach; in particular, VPR-enriched fractions showed a specific activity of 1.83 ± 0.03 U/mg at pH 6.0. Furthermore, in agreement with literature, the purified protein behaves like a SOD, with a calculated specific activity of approximatively 3.41 U/mg. The comparative genetic analysis of the partial VPR gene sequences from 17 different D. bruxellesis strains suggested that the observed polymorphism (2.3%) and the allelic heterozygosity state of the gene do not justify the well described strain-dependent character in producing volatile phenols of this species. Actually, no correlation exists between genotype membership of the analysed strains and their capability to release off-flavours. This work adds valuable knowledge to the study of D. bruxellensis wine spoilage and prepare the ground for interesting future industrial applications.
Collapse
Affiliation(s)
- Diego Romano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Federica Valdetara
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Paolo Zambelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Silvia Galafassi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Valerio De Vitis
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy
| | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Italy.
| |
Collapse
|
14
|
|
15
|
Leite F, Leite DR, Pereira L, de Barros Pita W, de Morais M. High intracellular trehalase activity prevents the storage of trehalose in the yeast Dekkera bruxellensis. Lett Appl Microbiol 2016; 63:210-4. [DOI: 10.1111/lam.12609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Affiliation(s)
- F.C.B. Leite
- Interdepartmental Research Group in Metabolic Engineering; Federal University of Pernambuco; Recife PE Brazil
- Department of Biology; Federal Rural University of Pernambuco; Recife PE Brazil
| | - D.V.da R. Leite
- Interdepartmental Research Group in Metabolic Engineering; Federal University of Pernambuco; Recife PE Brazil
| | - L.F. Pereira
- Interdepartmental Research Group in Metabolic Engineering; Federal University of Pernambuco; Recife PE Brazil
| | - W. de Barros Pita
- Interdepartmental Research Group in Metabolic Engineering; Federal University of Pernambuco; Recife PE Brazil
- Department of Antibiotics; Federal University of Pernambuco; Recife PE Brazil
| | - M.A. de Morais
- Interdepartmental Research Group in Metabolic Engineering; Federal University of Pernambuco; Recife PE Brazil
- Department of Genetics; Federal University of Pernambuco; Recife PE Brazil
| |
Collapse
|