1
|
Wang S, Luo J, Liu XQ, Kang OH, Kwon DY. Antibacterial activity and synergy of antibiotics with sanguisorbigenin isolated from Sanguisorba officinalis L. against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2021; 72:238-244. [PMID: 33064844 PMCID: PMC7986612 DOI: 10.1111/lam.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
Abstract
The present study evaluated the antibacterial activity and the synergy of the sanguisorbigenin (SGB) from the dried root of Sanguisorba officinalis L. combined with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. A total of six strains of reference strain and clinical isolates were used to determine the antibacterial activity using a broth microdilution assay, and the synergistic effects were determined using a checkerboard assay. To analyse the mechanism of synergy, we conducted the level of penicillin-binding protein 2a by western blot. In addition, quantitative RT-PCR was performed to analyse the mecA gene expression. The minimal inhibitory concentration values of SGB against six strains of S. aureus were in the range of 12·5-50 μg ml-1 , and there were synergy, or partial synergy effects when SGB was combined with antibiotics. Furthermore, when treated with SGB, the level of penicillin-binding protein 2a and the expression of the mecA gene was reduced significantly. In conclusion, this study demonstrated that SGB is a potential natural antibacterial agent against methicillin-resistant S. aureus that represents a considerable burden on the healthcare system worldwide, and may an exceptionally modulator of β-lactam antibiotics.
Collapse
Affiliation(s)
- S Wang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - J Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - X-Q Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - O-H Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| | - D-Y Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Korea
| |
Collapse
|
2
|
Wang G, Li L, Wang X, Li X, Zhang Y, Yu J, Jiang J, You X, Xiong YQ. Hypericin enhances β-lactam antibiotics activity by inhibiting sarA expression in methicillin-resistant Staphylococcus aureus. Acta Pharm Sin B 2019; 9:1174-1182. [PMID: 31867163 PMCID: PMC6900551 DOI: 10.1016/j.apsb.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023] Open
Abstract
Bacteremia is a life-threating syndrome often caused by methicillin-resistant Staphylococcus aureus (MRSA). Thus, there is an urgent need to develop novel approaches to successfully treat this infection. Staphylococcal accessory regulator A (SarA), a global virulence regulator, plays a critical role in pathogenesis and β-lactam antibiotic resistance in Staphylococcus aureus. Hypericin is believed to act as an antibiotic, antidepressant, antiviral and non-specific kinase inhibitor. In the current study, we investigated the impact of hypericin on β-lactam antibiotics susceptibility and mechanism(s) of its activity. We demonstrated that hypericin significantly decreased the minimum inhibitory concentrations of β-lactam antibiotics (e.g., oxacillin, cefazolin and nafcillin), biofilm formation and fibronectin binding in MRSA strain JE2. In addition, hypericin significantly reduced sarA expression, and subsequently decreased mecA, and virulence-related regulators (e.g., agr RNAⅢ) and genes (e.g., fnbA and hla) expression in the studied MRSA strain. Importantly, the in vitro synergistic effect of hypericin with β-lactam antibiotic (e.g., oxacillin) translated into in vivo therapeutic outcome in a murine MRSA bacteremia model. These findings suggest that hypericin plays an important role in abrogation of β-lactam resistance against MRSA through sarA inhibition, and may allow us to repurpose the use of β-lactam antibiotics, which are normally ineffective in the treatment of MRSA infections (e.g., oxacillin).
Collapse
Affiliation(s)
- Genzhu Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liang Li
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Yu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 67061033, fax: +86 10 67017302 (Xuefu You); Tel.: +1 310 2223545 (Yan Q. Xiong).
| | - Yan Q. Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Corresponding authors. Tel.: +86 10 67061033, fax: +86 10 67017302 (Xuefu You); Tel.: +1 310 2223545 (Yan Q. Xiong).
| |
Collapse
|