1
|
Tian J, Wei S, Liang W, Wang G. Enhancing levan biosynthesis by destroying the strongly acidic environment caused by membrane-bound glucose dehydrogenase (mGDH) in Gluconobacter sp. MP2116. Synth Syst Biotechnol 2024; 10:68-75. [PMID: 39263351 PMCID: PMC11388042 DOI: 10.1016/j.synbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Levan produced by Gluconobacter spp. has great potential in biotechnological applications. However, Gluconobacter spp. can synthesize organic acids during fermentation, resulting in environmental acidification. Few studies have focused on the effects of environmental acidification on levan synthesis. This study revealed that the organic acids, mainly gluconic acid (GA) and 2-keto-gluconic acid (2KGA) secreted by Gluconobacter sp. MP2116 created a highly acidic environment (pH < 3) that inhibited levan biosynthesis. The levansucrase derived from strain MP2116 had high enzyme activity at pH 4.0 ∼ pH 6.5. When the ambient pH was less than 3, the enzyme activity decreased by 67 %. Knocking out the mgdh gene of membrane-bound glucose dehydrogenase (mGDH) in the GA and 2KGA synthesis pathway in strain MP2116 eliminated the inhibitory effect of high acid levels on levansucrase function. As a result, the levan yield increased from 7.4 g/l (wild-type) to 18.8 g/l (Δmgdh) during fermentation without pH control. This study provides a new strategy for improving levan production by preventing the inhibition of polysaccharide synthesis by environmental acidification.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| |
Collapse
|
2
|
Sun Y, Liu T, Nie J, Yan J, Tang J, Jin K, Li C, Li H, Liu Y, Bai Z. Continuous catalytic production of 1,3-dihydroxyacetone: Sustainable approach combining perfusion cultures and immobilized cells. BIORESOURCE TECHNOLOGY 2024; 401:130734. [PMID: 38670288 DOI: 10.1016/j.biortech.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Currently, the predominant method for the industrial production of 1,3-dihydroxyacetone (DHA) from glycerol involves fed-batch fermentation. However, previous research has revealed that in the biocatalytic synthesis of DHA from glycerol, when the DHA concentration exceeded 50 g·L-1, it significantly inhibited microbial growth and metabolism, posing a challenge in maintaining prolonged and efficient catalytic production of DHA. In this study, a new integrated continuous production and synchronous separation (ICSS) system was constructed using hollow fiber columns and perfusion culture technology. Additionally, a cell reactivation technique was implemented to extend the biocatalytic ability of cells. Compared with fed-batch fermentation, the ICSS system operated for 360 h, yielding a total DHA of 1237.8 ± 15.8 g. The glycerol conversion rate reached 97.7 %, with a productivity of 3.44 g·L-1·h-1, representing 485.0 % increase in DHA production. ICSS system exhibited strong operational characteristics and excellent performance, indicating significant potential for applications in industrial bioprocesses.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Tang Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Jianqi Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jie Yan
- School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jiacheng Tang
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Kuiqi Jin
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Chunyang Li
- Chengdu Yingde Biological Pharmaceutical Equipment Co., Ltd.,Chengdu 610000,China.
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
4
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Jackson E, Ripoll M, Betancor L. Efficient glycerol transformation by resting Gluconobacter cells. Microbiologyopen 2019; 8:e926. [PMID: 31532065 PMCID: PMC6925173 DOI: 10.1002/mbo3.926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
In the present work, glycerol biotransformation using Gluconobacter strains was studied with a process intensification perspective that facilitated the development of a cleaner and more efficient technology from those previously reported. Starting from the industrial by-product, crude glycerol, resting cells of Gluconobacter frateurii and Gluconobacter oxydans were able to convert glycerol under batch reactor conditions in water with no other additive but for the substrate. The study of strains, biomass:solution ratio, pH, growth stage, and simplification of media composition in crude glycerol bioconversions facilitated productivities of glyceric acid of 0.03 g/L.h and 2.07 g/L.h (71.5 g/g % pure by NMR) of dihydroxyacetone (DHA). Productivities surmounted recent reported fermentative bioconversions of crude glycerol and were unprecedented for the use of cell suspended solely in water. This work proposes a novel approach that allows higher productivities, cleaner production, and reduction in water and energy consumption, and demonstrates the applicability of the proposed approach.
Collapse
Affiliation(s)
- Erienne Jackson
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| | - Magdalena Ripoll
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| | - Lorena Betancor
- Department of BiotechnologyUniversidad ORT UruguayMontevideoUruguay
| |
Collapse
|
6
|
Glutamate addition improves the activity of membrane-bound sorbitol dehydrogenase in a pyrroloquinoline quinone-dependent manner: A feasible strategy for the cost-effective fermentation of Gluconobacter oxydans. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA J 2019; 17:e05753. [PMID: 32626372 PMCID: PMC7009089 DOI: 10.2903/j.efsa.2019.5753] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.
Collapse
|
8
|
Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Waste glycerol is the main by-product generated during biodiesel production, in an amount reaching up to 10% of the produced biofuel. Is there any method which allows changing this waste into industrial valuable compounds? This manuscript describes a method for valorization of crude glycerol via microbial bioconversion. It has been shown that the use of free and immobilized biocatalysts obtained from Gluconobacter oxydans can enable beneficial valorization of crude glycerol to industrially valuable dihydroxyacetone. The highest concentration of this compound, reaching over 20 g·L−1, was obtained after 72 h of biotransformation with free G. oxydans cells, in a medium containing 30 or 50 g·L−1 of waste glycerol. Using a free cell extract resulted in higher concentrations of dihydroxyacetone and a higher valorization efficiency (up to 98%) compared to the reaction with an immobilized cell extract. Increasing waste glycerol concentration to 50 g·L−1 causes neither a faster nor higher increase in product yield and reaction efficiency compared to its initial concentration of 30 g·L−1. The proposed method could be an alternative for utilization of a petrochemical waste into industry applicated chemicals.
Collapse
|
9
|
Hu ZC, Bu JL, Wang RY, Ke X, Zheng YG. Enhanced Production of 6-(N-Hydroxyethyl)-Amino-6-Deoxy-α-L-Sorbofuranose by Immobilized Gluconobacter oxydanson Corn Stover with a pH Control Strategy in a Bubble Column Bioreactor. Appl Biochem Biotechnol 2018; 188:297-309. [DOI: 10.1007/s12010-018-2924-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
|