1
|
Han K, Li Y, Zhang Z, Sun L, Wang ET, Li Y. Comparative genome analysis of Sesbania cannabina-nodulating Rhizobium spp. revealing the symbiotic and transferrable characteristics of symbiosis plasmids. Microb Genom 2023; 9. [PMID: 37133904 DOI: 10.1099/mgen.0.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.
Collapse
Affiliation(s)
- Kunming Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
2
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
3
|
Wulandari D, Tittabutr P, Songwattana P, Piromyou P, Teamtisong K, Boonkerd N, Boonchuen P, Teaumroong N. Symbiosis Contribution of Non-nodulating <i>Bradyrhizobium cosmicum</i> S23321 after Transferal of the Symbiotic Plasmid pDOA9. Microbes Environ 2022; 37. [PMID: 35676049 PMCID: PMC9530727 DOI: 10.1264/jsme2.me22008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The symbiotic properties of rhizobial bacteria are driven by the horizontal gene transfer of symbiotic genes, which are located in symbiosis islands or on plasmids. The symbiotic megaplasmid pDOA9 of Bradyrhizobium sp. DOA9, carrying the nod, nif, fix, and type three secretion system (T3SS) genes, has been conjugatively transferred to different Bradyrhizobium strains. In the present study, non-nodulating B. cosmicum S23321, which shows a close phylogenetic relationship with Bradyrhizobium sp. DOA9, but lacks symbiotic properties, was used to carry pDOA9 (annotated as chimeric S2:pDOA9). The results obtained showed that pDOA9 conferred symbiotic properties on S23321; however, nodulation phenotypes varied among the DOA9, chimeric ORS278:pDOA9, and S2:pDOA9 strains even though they all carried symbiotic pDOA9 plasmid. S23321 appeared to gain symbiotic nodulation from pDOA9 by processing nodulation genes and broadening the host range. The present results also showed the successful formation of active nodules in Arachis hypogaea (Dalbergoid) and Vigna radiata (Millitoid) by chimeric S2:pDOA9, while Crotalaria juncea (Genistoid) and Macroptilium atropurpureum (Millitoid) formed nodule-like structures. The formation of nodules and nodule-like structures occurred in a nod factor-dependent manner because the nod factor-lacking strain (S2:pDOA9ΩnodB) completely abolished nodulation in all legumes tested. Moreover, T3SS carried by S2:pDOA9 exerted negative effects on symbiosis with Crotalaria juncea, which was consistent with the results obtained on DOA9. T3SS exhibited symbiotic compatibility with V. radiata when nodulated by S23321. These outcomes implied that pDOA9 underwent changes during legume evolution that broadened host specificity and the compatibility of nodulation in a manner that was dependent on the chromosomal background of the recipient as well as legume host restrictions.
Collapse
Affiliation(s)
- Dyah Wulandari
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pongpan Songwattana
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pongdet Piromyou
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
4
|
Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol 2021; 12:606396. [PMID: 34803935 PMCID: PMC8600371 DOI: 10.3389/fmicb.2021.606396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.
Collapse
Affiliation(s)
| | | | | | - Rafael Peña-Miller
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347-359. [PMID: 33469168 DOI: 10.1038/s41579-020-00497-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Plasmids have a key role in bacterial ecology and evolution because they mobilize accessory genes by horizontal gene transfer. However, recent studies have revealed that the evolutionary impact of plasmids goes above and beyond their being mere gene delivery platforms. Plasmids are usually kept at multiple copies per cell, producing islands of polyploidy in the bacterial genome. As a consequence, the evolution of plasmid-encoded genes is governed by a set of rules different from those affecting chromosomal genes, and these rules are shaped by unusual concepts in bacterial genetics, such as genetic dominance, heteroplasmy or segregational drift. In this Review, we discuss recent advances that underscore the importance of plasmids in bacterial ecology and evolution beyond horizontal gene transfer. We focus on new evidence that suggests that plasmids might accelerate bacterial evolution, mainly by promoting the evolution of plasmid-encoded genes, but also by enhancing the adaptation of their host chromosome. Finally, we integrate the most relevant theoretical and empirical studies providing a global understanding of the forces that govern plasmid-mediated evolution in bacteria.
Collapse
|
7
|
Complete Genome Sequence of Rhizobium sp. Strain 11515TR, Isolated from Tomato Rhizosphere in the Philippines. Microbiol Resour Announc 2018; 7:MRA00903-18. [PMID: 30533911 PMCID: PMC6256449 DOI: 10.1128/mra.00903-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain 11515TR was isolated from the rhizosphere of tomato in Laguna, Philippines. Rhizobium sp. strain 11515TR was isolated from the rhizosphere of tomato in Laguna, Philippines. The 7.07-Mb complete genome comprises three replicons, one chromosome, and two plasmids, with a G+C content of 59.4% and 6,720 protein-coding genes. The genome encodes gene clusters supporting rhizosphere processes, plant symbiosis, and secondary bioactive metabolites.
Collapse
|