1
|
Narh JK, Casillas-Vega NG, Zarate X. LL-37_Renalexin hybrid peptide exhibits antimicrobial activity at lower MICs than its counterpart single peptides. Appl Microbiol Biotechnol 2024; 108:126. [PMID: 38229302 DOI: 10.1007/s00253-023-12887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
An alarming global public health and economic peril has been the emergence of antibiotic resistance resulting from clinically relevant bacteria pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species constantly exhibiting intrinsic and extrinsic resistance mechanisms against last-resort antibiotics like gentamycin, ciprofloxacin, tetracycline, colistin, and standard ampicillin prescription in clinical practices. The discovery and applications of antimicrobial peptides (AMPs) with antibacterial properties have been considered and proven as alternative antimicrobial agents to antibiotics. In this study, we have designed, produced, and purified a recombinant novel multifunctional hybrid antimicrobial peptide LL-37_Renalexin for the first time via the application of newly designed flexible GS peptide linker coupled with the use of our previously characterized small metal-binding proteins SmbP and CusF3H+ as carrier proteins that allow for an enhanced bacterial expression, using BL21(DE3) and SHuffle T7(DE3) Escherichia coli strains, and purification of the hybrid peptide via immobilized metal affinity chromatography. The purified tag-free LL-37_Renalexin hybrid peptide exhibited above 85% reduction in bacteria colony-forming units and broad-spectrum antimicrobial effects against Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae bacteria clinical isolates at a lower minimum inhibition concentration level (10-33 μM) as compared to its counterpart single-AMPs LL-37 and Renalexin (50-100 μM). KEY POINTS: • The hybrid antimicrobial peptide LL-37_Renalexin has been designed using a GS linker. • The peptide was expressed with the carrier proteins SmbP and CusF3H+. • The hybrid peptide shows antibacterial potency against clinical bacterial isolates.
Collapse
Affiliation(s)
- Julius Kwesi Narh
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, 66455, San Nicolas de los Garza, NL, Mexico
| | - Nestor G Casillas-Vega
- Departamento de Patologia Clinica, Hospital Universitario Dr. Jose Eleuterio Gonzalez, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, NL, Mexico
| | - Xristo Zarate
- Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Avenida Universidad s/n, Ciudad Universitaria, 66455, San Nicolas de los Garza, NL, Mexico.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Lu J, Huang Z, Hua H, Li Y, Xu J, Feng J. High-yield and cost-effective biosynthesis process for producing antimicrobial peptide AA139. Protein Expr Purif 2024; 219:106475. [PMID: 38552891 DOI: 10.1016/j.pep.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
AA139, a variant of natural antimicrobial peptide (AMP) arenicin-3, displayed potent activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria. Nevertheless, there were currently few reports on the bioprocess of AA139, and the yields were less than 5 mg/L. Additionally, it was difficult and expensive to prepare AA139 through chemical synthesis due to its complex structure. These factors have impeded the further research and following clinical application of AA139. Here, we reported a bioprocess for the preparation of AA139, which was expressed in Escherichia coli (E. coli) BL21 (DE3) intracellularly in a soluble form via SUMO (small ubiquitin-related modifier) fusion technology. Then, recombinant AA139 (rAA139, refer to AA139 obtained by recombinant expression in this study) was obtained through the simplified downstream process, which was rationally designed in accordance with the physicochemical characteristics. Subsequently, the expression level of the interest protein was increased by 54% after optimization of high cell density fermentation (HCDF). Finally, we obtained a yield of 56 mg of rAA139 from 1 L culture with a purity of 98%, which represented the highest reported yield of AA139 to date. Furthermore, various characterizations were conducted to confirm the molecular mass, disulfide bonds, and antimicrobial activity of rAA139.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China
| | - Yapeng Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China
| | - Jianguang Lu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China; Shanghai Duomirui Bio-Technology Co. Ltd., Shanghai, 201203, People's Republic of China
| | - Zongqing Huang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China; Shanghai Duomirui Bio-Technology Co. Ltd., Shanghai, 201203, People's Republic of China
| | - Haoju Hua
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China; Shanghai Duomirui Bio-Technology Co. Ltd., Shanghai, 201203, People's Republic of China
| | - Yanan Li
- School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China
| | - Jun Xu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China; Shanghai Duomirui Bio-Technology Co. Ltd., Shanghai, 201203, People's Republic of China
| | - Jun Feng
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 201203, People's Republic of China; Shanghai Duomirui Bio-Technology Co. Ltd., Shanghai, 201203, People's Republic of China.
| |
Collapse
|
3
|
Pennone V, Rosini E, Mascheroni E, Gianola S, Castellini G, Bargeri S, Lovati AB. Revolutionizing orthopedic healthcare: a systematic review unveiling recombinant antimicrobial peptides. Front Microbiol 2024; 15:1370826. [PMID: 38756724 PMCID: PMC11097975 DOI: 10.3389/fmicb.2024.1370826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The increasing demand for orthopedic surgeries, including joint replacements, is driven by an aging population and improved diagnosis of joint conditions. Orthopedic surgeries carry a risk of infection, especially in patients with comorbidities. The rise of antibiotic resistance exacerbates this issue, necessitating alternatives like in vitro bioengineered antimicrobial peptides (AMPs), offering broad-spectrum activity and multiple action mechanisms. This review aimed to assess the prevalence of antimicrobial potential and the yield after purification among recombinant AMP families. The antimicrobial potential was evaluated using the Minimum Inhibitory Concentration (MIC) values against the most common bacteria involved in clinical infections. This systematic review adhered to PRISMA guidelines, focusing on in vitro studies of recombinant AMPs. The search strategy was run on PubMed, Scopus and Embase up to 30th March 2023. The Population, Exposure and Outcome model was used to extract the data from studies and ToxRTool for the risk of bias analysis. This review included studies providing peptide production yield data and MIC values against pathogenic bacteria. Non-English texts, reviews, conference abstracts, books, studies focusing solely on chemical synthesis, those reporting incomplete data sets, using non-standard MIC assessment methods, or presenting MIC values as ranges rather than precise concentrations, were excluded. From 370 publications, 34 studies on AMPs were analyzed. These covered 46 AMPs across 18 families, with Defensins and Hepcidins being most common. Yields varied from 0.5 to 2,700 mg/L. AMPs were tested against 23 bacterial genera, with MIC values ranging from 0.125 to >1,152 μg/mL. Arenicins showed the highest antimicrobial activity, particularly against common orthopedic infection pathogens. However, AMP production yields varied and some AMPs demonstrated limited effectiveness against certain bacterial strains. This systematic review emphasizes the critical role of bioengineered AMPs to cope infections and antibiotic resistance. It meticulously evaluates recombinant AMPs, focusing on their antimicrobial efficacy and production yields. The review highlights that, despite the variability in AMP yields and effectiveness, Arenicins and Defensins are promising candidates for future research and clinical applications in treating antibiotic-resistant orthopedic infections. This study contributes significantly to the understanding of AMPs in healthcare, underscoring their potential in addressing the growing challenge of antibiotic resistance. Systematic review registration:https://osf.io/2uq4c/.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Mascheroni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Silvia Bargeri
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
4
|
Huang Z, Hua H, Du X, Zhen Z, Zhao W, Feng J, Li JA. A specific nanobody-based affinity chromatography resin as a platform for small ubiquitin-related modifier fusion protein purification. J Chromatogr A 2024; 1713:464508. [PMID: 38006661 DOI: 10.1016/j.chroma.2023.464508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
As an excellent fusion tag for expressing heterologous proteins, yeast SUMO (small ubiquitin-related modifier) has unique advantages such as improving solubility, promoting stability, and reducing degradation, but it lacks a simple and rapid purification method. Camelid single-domain antibodies (VHHs or nanobodies) show great promise as an efficient tool in analytical application. In this study, VHHs against SUMO protein were isolated for the first time using biopanning of an immune camelid nanobody library. Among these nanobodies, VS2 demonstrated a high expression level (1.12 g L - 1), and a high affinity for SUMO (2.26 nM). Meanwhile, VHHs were coupled to agarose resins by cysteine at the C-terminal to form affinity chromatography resins. The VS2 resin showed excellent specificity and a dynamic binding capacity for SUMO, SUMO-DsbA (disulfide oxidoreductase) and SUMO-SAM (S-adenosylmethionine synthetase) were 2.41 mg/mL resin, 7.57 mg/mL resin and 16.23 mg/mL resin, respectively. Furthermore, the VS2 resin enabled one-step purification of SUMO-fusions [SUMO-Fc (human IgG1-Fc fragment), SUMO-IGF1 (human insulin-like growth factor 1), SUMO-FGF21 (human fibroblast growth factor 21), SUMO-G-CSF (human Granulocyte colony-stimulating factor), SUMO-PDGF (human platelet-derived growth factor) and SUMO-PAS200 (conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala-and Ser)], and maintained binding capacity and selectivity over 25 purification cycles, each including 15 min of cleaning-in-place with 0.1 M NaOH. This study demonstrated that the VS2 resin was a useful tool at the laboratory scale for one-step purification of various SUMO fusions from complex mixtures.
Collapse
Affiliation(s)
- Zongqing Huang
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China
| | - Haoju Hua
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China
| | - Xiuzhen Du
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Zipeng Zhen
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Wei Zhao
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Jun Feng
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China.
| | - Ji-An Li
- China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China.
| |
Collapse
|
5
|
Xu Y, Dong M, Wang Q, Sun Y, Hang B, Zhang H, Hu J, Zhang G. Soluble Expression of Antimicrobial Peptide BSN-37 from Escherichia coli by SUMO Fusion Technology. Protein J 2023; 42:563-574. [PMID: 37561256 DOI: 10.1007/s10930-023-10144-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Antimicrobial peptides (AMPs) are a kind of small molecular peptide that an organism produces to resist the invasion of foreign microorganisms. AMP BSN-37 is a bovine AMP that exhibits high antibacterial activity. In this paper, the optimized gene AMP BSN-37 was cloned into pCold-SUMO for fusion expression by recombinant DNA technology. The gene sequence of AMP BSN-37 was obtained by codons reverse translation, and the codons were optimized according to the codons preference of Escherichia coli (E. coli). The recombinant plasmid was constructed and identified by PCR, enzyme digestion and sequencing. Then the recombinant plasmid was transformed into BL21 E. coli to induce expression, and the IPTG concentration and time were optimized. The expressed soluble fusion protein SUMO-BSN-37 was purified by chromatography and then cleaved by SUMO proteases to release BSN-37. SDS-PAGE electrophoresis and Western blotting were used for identification. The recombinant plasmid pCold-SUMO-BSN-37 was obtained, and the fusion AMP BSN-37 was preliminarily expressed in BL21. After optimization, the optimal expression condition was 37 ℃ with 0.4 µM IPTG and 6 h incubation. Under optimal conditions, a large amount of fusion AMP BSN-37 was obtained by purification. Western blotting showed that the fusion peptide was successfully expressed and had good activity. The expressed BSN-37 showed antimicrobial activity similar to that of synthesized BSN-37. In this study, soluble expression products of AMP BSN-37 were obtained, and the problem regarding the limited source of AMP BSN-37 could be effectively solved, laying a foundation for further research on AMP BSN-37.
Collapse
Affiliation(s)
- Yanzhao Xu
- Postdoctoral Research Station, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Mengmeng Dong
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qing Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jianhe Hu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Gaiping Zhang
- Postdoctoral Research Station, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
6
|
dos Santos C, Franco OL. Advances in the use of plants as potential biofactories in the production of antimicrobial peptides. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cristiane dos Santos
- S‐Inova Biotech, Pós‐Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
| | - Octávio Luiz Franco
- S‐Inova Biotech, Pós‐Graduação em Biotecnologia Universidade Católica Dom Bosco Campo Grande Brazil
- Centro de Análises Proteômicas e Bioquímica, Pós‐Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília Brasília Brazil
| |
Collapse
|
7
|
Leannec-Rialland V, Atanasova V, Chereau S, Tonk-Rügen M, Cabezas-Cruz A, Richard-Forget F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi (Basel) 2022; 8:229. [PMID: 35330231 PMCID: PMC8950385 DOI: 10.3390/jof8030229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.
Collapse
Affiliation(s)
- Valentin Leannec-Rialland
- Université de Bordeaux, UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France;
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chereau
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Institute of Nutritional Sciences, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Alejandro Cabezas-Cruz
- Anses, Ecole Nationale Vétérinaire d’Alfort, UMR Parasitic Molecular Biology and Immunology (BIPAR), Laboratoire de Santé Animale, INRAE, 94700 Maison-Alfort, France
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| |
Collapse
|
8
|
Luo S, Saadi A, Fu K, Taxipalati M, Deng L. Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6355-6367. [PMID: 33969891 DOI: 10.1002/jsfa.11306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In recent years, there has been considerable interest in the use of biopolymer electrospun nanofibers for various food applications due to the biocompatibility, biodegradability, and high loading capacity. Herein, we fabricated and characterized novel hybrid electrospun fibers from dextran (50%, w/v) and zein (0-30%, w/v) solutions, and the effects of various zein concentrations on the properties of the hybrid electrospun fibers were investigated. RESULTS When zein was added at low concentrations (5% and 10%), dextran and zein showed poor miscibility, as reflected by significantly decreased viscosity of the solutions, and the poor mechanical properties of the derived fiber membranes. When zein was added at medium concentrations (15-25%), hydrogen bonds were formed between dextran and zein molecules, as indicated by the red shift of Fourier-transform infrared bands and β-sheet to α-helix structural transformations. The fiber membranes electrospun from a solution with 25% zein showed the most hydrophobic surface, with a water contact angle of 116.9°. The homogenous dispersion of dextran and zein resulted in improved mechanical properties for fibers electrospun from a solution with 30% zein. Curcumin encapsulating dextran/zein electrospun fibers exhibited effective radical scavenging activity and ferric reducing power, along with the desired controlled release behavior for curcumin delivery. CONCLUSION Food grade dextran/zein hybrid electrospun fibers demonstrated tunable properties, and appear to be promising as delivery systems for bioactive and edible antimicrobial food packaging. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiyuan Luo
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| | - Abdullah Saadi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kai Fu
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| | - Maierhaba Taxipalati
- Department of Modern Agriculture, Turpan Vocational and Technical College, Turpan, China
| | - Lingli Deng
- College of Biological Science and Technology, Hubei Key Laboratory of Biological Resources Protection and Utilization, Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, China
| |
Collapse
|
9
|
Charting the sequence-activity landscape of peptide inhibitors of translation termination. Proc Natl Acad Sci U S A 2021; 118:2026465118. [PMID: 33674389 DOI: 10.1073/pnas.2026465118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Apidaecin (Api), an unmodified 18-amino-acid-long proline-rich antibacterial peptide produced by bees, has been recently described as a specific inhibitor of translation termination. It invades the nascent peptide exit tunnel of the postrelease ribosome and traps the release factors preventing their recycling. Api binds in the exit tunnel in an extended conformation that matches the placement of a nascent polypeptide and establishes multiple contacts with ribosomal RNA (rRNA) and ribosomal proteins. Which of these interactions are critical for Api's activity is unknown. We addressed this problem by analyzing the activity of all possible single-amino-acid substitutions of the Api variants synthesized in the bacterial cell. By conditionally expressing the engineered api gene, we generated Api directly in the bacterial cytosol, thereby bypassing the need for importing the peptide from the medium. The endogenously expressed Api, as well as its N-terminally truncated mutants, retained the antibacterial properties and the mechanism of action of the native peptide. Taking advantage of the Api expression system and next-generation sequencing, we mapped in one experiment all the single-amino-acid substitutions that preserve or alleviate the on-target activity of the Api mutants. Analysis of the inactivating mutations made it possible to define the pharmacophore of Api involved in critical interactions with the ribosome, transfer RNA (tRNA), and release factors. We also identified the Api segment that tolerates a variety of amino acid substitutions; alterations in this segment could be used to improve the pharmacological properties of the antibacterial peptide.
Collapse
|
10
|
Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics (Basel) 2020; 9:antibiotics9090541. [PMID: 32858882 PMCID: PMC7558204 DOI: 10.3390/antibiotics9090541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can produce recombinant proteins quickly and cost effectively. However, their physiological properties limit their use for the production of proteins in their native form, especially polypeptides that are subjected to major post-translational modifications. Proteins that rely on disulfide bridges for their stability are difficult to produce in Escherichia coli. The bacterium offers the least costly, simplest, and fastest method for protein production. However, it is difficult to produce proteins with a very large size. Saccharomyces cerevisiae and Pichia pastoris are the most commonly used yeast species for protein production. At a low expense, yeasts can offer high protein yields, generate proteins with a molecular weight greater than 50 kDa, extract signal sequences, and glycosylate proteins. Both eukaryotic and prokaryotic species maintain reducing conditions in the cytoplasm. Hence, the formation of disulfide bonds is inhibited. These bonds are formed in eukaryotic cells during the export cycle, under the oxidizing conditions of the endoplasmic reticulum. Bacteria do not have an advanced subcellular space, but in the oxidizing periplasm, they exhibit both export systems and enzymatic activities directed at the formation and quality of disulfide bonds. Here, we discuss current techniques used to target eukaryotic and prokaryotic species for the generation of correctly folded proteins with disulfide bonds.
Collapse
|
11
|
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 2020; 104:2411-2425. [DOI: 10.1007/s00253-020-10402-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|
12
|
Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins. Biotechniques 2019; 67:16-22. [PMID: 31092000 DOI: 10.2144/btn-2019-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are subject to post-translational modifications. This allows the same polypeptide to be involved in different interaction networks with different consequences, ranging from regulatory signalling networks to the formation of membrane-less organelles. We report a robust method for co-expression of modification enzyme and SUMO-tagged IDPs with a subsequent purification procedure that allows for the production of modified IDP. The robustness of our protocol is demonstrated using a challenging system: RNA polymerase II C-terminal domain (CTD); that is, a low-complexity repetitive region with multiple phosphorylation sites. In vitro phosphorylation approaches fail to yield multiple-site phosphorylated CTD, whereas our in vivo protocol allows the rapid production of near homogeneous phosphorylated CTD at a low cost. These samples can be used in functional and structural studies.
Collapse
|