1
|
Aboyadak IM, Abdel-Tawwab M, Ali NG. Identification and florfenicol-treatment of pseudomonas putida infection in gilthead seabream (Sparus aurata) fed on tilapia-trash-feed. BMC Vet Res 2024; 20:156. [PMID: 38664683 PMCID: PMC11044311 DOI: 10.1186/s12917-024-04004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to determine the major cause of the high mortality affecting farmed gilthead seabream (Sparus aurata) and controlling this disease condition. Fifteen diseased S. aurata were sampled from a private fish farm located at Eldeba Triangle, Damietta, fish showed external skin hemorrhages, and ulceration. Bacterial isolates retrieved from the diseased fish were identified biochemically as Pseudomonas putida and then confirmed by phylogenetic analysis of the 16 S rRNA gene sequence. P. putida was also isolated from three batches of tilapia-trash feed given to S. aurata. Biofilm and hemolytic assay indicated that all P. putida isolates produced biofilm, but 61.11% can haemolyse red blood cells. Based on the antibiotic susceptibility test results, P. putida was sensitive to florfenicol with minimum inhibitory concentrations ranging between 0.25 and 1.0 µg mL- 1, but all isolates were resistant to ampicillin and sulfamethoxazole-trimethoprim. Pathogenicity test revealed that P. putida isolate (recovered from the tilapia-trash feed) was virulent for S. aurata with LD50 equal to 4.67 × 107 colony forming unit (CFU) fish- 1. After intraperitoneal (IP) challenge, fish treated with 10 mg kg- 1 of florfenicol showed 16.7% mortality, while no mortality was recorded for the fish group that received 20 mg kg- 1. The non-treated fish group showed 46.7% mortality after bacterial challenge. HPLC analysis of serum florfenicol levels reached 1.07 and 2.52 µg mL- 1 at the 5th -day post-drug administration in the fish groups received 10 and 20 mg kg- 1, respectively. In conclusion, P. putida was responsible for the high mortality affecting cultured S. aurata, in-feed administration of florfenicol (20 mg kg- 1) effectively protected the challenged fish.
Collapse
Affiliation(s)
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Nadia G Ali
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
2
|
Jia R, Hou Y, Feng W, Nomingerel M, Li B, Zhu J. Multi-Omics Analysis to Understand the Effects of Dietary Proanthocyanidins on Antioxidant Capacity, Muscle Nutrients, Lipid Metabolism, and Intestinal Microbiota in Cyprinus carpio. Antioxidants (Basel) 2023; 12:2095. [PMID: 38136215 PMCID: PMC10740959 DOI: 10.3390/antiox12122095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Proanthocyanidins (Pros), a natural polyphenolic compound found in grape seed and other plants, have received significant attention as additives in animal feed. However, the specific mechanism by which Pros affect fish health remains unclear. Therefore, the aim of this study was to investigate the potential effects of dietary Pro on common carp by evaluating biochemical parameters and multi-omics analysis. The results showed that Pro supplementation improved antioxidant capacity and the contents of polyunsaturated fatty acids (n-3 and n-6) and several bioactive compounds. Transcriptomic analysis demonstrated that dietary Pro caused an upregulation of the sphingolipid catabolic process and the lysosome pathway, while simultaneously downregulating intestinal cholesterol absorption and the PPAR signaling pathway in the intestines. Compared to the normal control (NC) group, the Pro group exhibited higher diversity in intestinal microbiota and an increased relative abundance of Cetobacterium and Pirellula. Furthermore, the Pro group had a lower Firmicutes/Bacteroidetes ratio and a decreased relative abundance of potentially pathogenic bacteria. Collectively, dietary Pro improved antioxidant ability, muscle nutrients, and the diversity and composition of intestinal microbiota. The regulation of lipid metabolism and improvement in muscle nutrients were linked with changes in the intestinal microbiota.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (W.F.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (W.F.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Wenrong Feng
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (W.F.)
| | | | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (W.F.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (R.J.); (Y.H.); (W.F.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
| |
Collapse
|
3
|
Field Efficacy of a Feed-Based Inactivated Vaccine against Vibriosis in Cage-Cultured Asian Seabass, Lates calcarifer, in Malaysia. Vaccines (Basel) 2022; 11:vaccines11010009. [PMID: 36679854 PMCID: PMC9865705 DOI: 10.3390/vaccines11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Vibrio spp. are important aquaculture pathogens that cause vibriosis, affecting large numbers of marine fish species. This study determines the field efficacy of a feed-based inactivated vaccine against vibriosis in cage-cultured Asian seabass. A total of 4800 Asian seabass, kept in a field environment, were separated equally into two groups (vaccinated and non-vaccinated) in duplicate. Fish of Group 1 were orally administered the feed-based vaccine on weeks 0 (prime vaccination), 2 (booster), and 6 (second booster) at 4% body weight, while the non-vaccinated fish of Group 2 were fed with a commercial formulated pellet without the vaccine. Fish gut, mucus, and serum were collected, the length and weight of the fish were noted, while the mortality was recorded at 2-week intervals for a period of 16 weeks. The non-specific lysozyme activities were significantly (p < 0.05) higher in the fish of Group 1 than the non-vaccinated fish of Group 2. Similarly, the specific IgM antibody levels in serum and mucus were significantly (p < 0.05) higher in Group 1 than in Group 2, as seen in the second week, with the highest level 8 weeks after primary immunization. At week 16, the growth performance was significantly (p < 0.05) better in Group 1 and showed lower bacterial isolation in the gut than Group 2. Despite the statistical insignificance (p > 0.05), the survival rate was slightly higher in Group 1 (71.3%) than Group 2 (67.7%). This study revealed that feed-based vaccination improves growth performance, stimulates innate and adaptive immune responses, and increases protection of cultured Asian seabass, L. calcarifer, against vibriosis.
Collapse
|
4
|
The Isolation of Vibrio crassostreae and V. cyclitrophicus in Lesser-Spotted Dogfish (Scyliorhinus canicula) Juveniles Reared in a Public Aquarium. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The genus Vibrio currently contains 147 recognized species widely distributed, including pathogens for aquatic organisms. Vibrio infections in elasmobranchs are poorly reported, often with identifications as Vibrio sp. and without detailed diagnostic insights. The purpose of this paper is the description of the isolation and identification process of Vibrio spp. following a mortality event of Scyliorhinus canicula juvenile reared in an Italian public aquarium. Following investigations aimed at excluding the presence of different pathogens of marine fish species (parasites, bacteria, Betanodavirus), several colonies were isolated and subjected to species identification using the available diagnostic techniques (a biochemical test, MALDI-TOF MS, and biomolecular analysis). Discrepancies were observed among the methods; the limits of biochemistry as a unique tool for Vibrio species determination were detected through statistical analysis. The use of the rpoB gene, as a diagnostic tool, allowed the identification of the isolates as V. crassostreae and V. cyclotrophicus. Although the pathogenic role of these microorganisms in lesser-spotted dogfish juveniles has not been demonstrated, and the presence of further pathogens cannot be excluded, this study allowed the isolation of two Vibrio species in less-studied aquatic organisms, highlighting the weaknesses and strengths of the different diagnostic methods applied.
Collapse
|
5
|
Mohd Yazid SH, Mohd Daud H, Azmai MNA, Mohamad N, Mohd Nor N. Estimating the Economic Loss Due to Vibriosis in Net-Cage Cultured Asian Seabass ( Lates calcarifer): Evidence From the East Coast of Peninsular Malaysia. Front Vet Sci 2021; 8:644009. [PMID: 34692800 PMCID: PMC8531722 DOI: 10.3389/fvets.2021.644009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
This study aims to estimate the economic loss due to vibriosis in the production of Asian seabass in floating net-cages on the east coast of Peninsular Malaysia. Asian seabass has contributed significantly to Malaysia's economic activities and food security. However, its production can be hindered by the occurrence of diseases, such as vibriosis, causing severe economic losses to farmers. A questionnaire-based survey was conducted on 14 small-scale monoculture Asian seabass net-cage farms. Using a stochastic bioeconomic model and inputs from the survey, existing literature, and expert opinion, the economic losses were determined. Moreover, this model considered the prevalence of Vibrio spp. at a farm on the east coast and the risk posed by its infection from hatcheries. The results showed that 71.09% of Asian seabass simulated in the stochastic model survived. The mortality rate due to vibriosis and other causes was at 16.23 and 12.68%, respectively. The risk posed by Vibrio spp. infection from hatcheries contributed to 2.77% of the increase in Asian seabass mortality. The stochastic model estimated that the total cost of producing a tail of Asian seabass was €2.69 per kilogram. The economic loss of vibriosis was estimated at €0.19 per tail per kilogram, which represents 7.06% of the total production cost of Asian seabass per kilogram. An increase in the prevalence of clinical vibriosis and vibriosis case fatality rate at 42 and 100%, respectively, will lead to an increase in the cost of grow-out Asian seabass by €0.29 per tail from the default value. An increase in pellet price per kilogram by €1.38 and feed conversion ratio pellet by 0.96 will consequently increase the cost of grow-out Asian seabass by €2.29 per tail and €0.82 per tail, respectively. We find that the occurrence of Vibrio spp. infection at the hatchery level can contribute to an increased risk in the mortality of Asian seabass during the grow-out phase. Hence, we also need to focus on the control and prevention of vibriosis infection from hatcheries.
Collapse
Affiliation(s)
- Siti Hajar Mohd Yazid
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hassan Mohd Daud
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurliyana Mohamad
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norhariani Mohd Nor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
6
|
Copin S, Mougin J, Raguenet V, Robert-Pillot A, Midelet G, Grard T, Bonnin-Jusserand M. Ethidium and propidium monoazide: comparison of potential toxicity on Vibrio sp. viability. Lett Appl Microbiol 2020; 72:245-250. [PMID: 33058219 DOI: 10.1111/lam.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.
Collapse
Affiliation(s)
- S Copin
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - J Mougin
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - V Raguenet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - A Robert-Pillot
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Vibrions et du Choléra, Paris, France
| | - G Midelet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - T Grard
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - M Bonnin-Jusserand
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
7
|
Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, Nasruddin NS. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. BMC Vet Res 2019; 15:176. [PMID: 31138199 PMCID: PMC6537206 DOI: 10.1186/s12917-019-1907-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia. Results A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp. Conclusions The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.
Collapse
Affiliation(s)
- Nurliyana Mohamad
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Azmai Amal
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. .,Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Mohd Zamri Saad
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nor Amalina Zulkiply
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Muskhazli Mustafa
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|