1
|
Reis TC, Paiva LFD, Santos VHM, Gonçalves CP, Costa FEC, Pereira RM. Biological activity in hydroethanolic extracts from bark, stem, and leaves of the Stryphnodendron adstringens (Mart.) Coville. BRAZ J BIOL 2025; 84:e286845. [PMID: 39907336 DOI: 10.1590/1519-6984.286845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 02/06/2025] Open
Abstract
Stryphnodendron adstringens (Mart.) Coville, commonly known as "barbatimão," is native to the Cerrado biome in Brazil and belongs to the botanical family Fabaceae. The objective of this study was to evaluate the biological activity of crude hydroethanolic extracts formulated from the bark, leaves, and stems of S. adstringens. Soluble solids were determined using the incubation drying methodology. Colorimetric methods of complexation with ferric chloride were employed as a qualitative assay to identify the presence of tannins, while phenolics and flavonoids were quantified by the Folin-Ciocalteu method and aluminum chloride complexation, respectively. Antioxidant activity was assessed by the capture of DPPH free radicals. Antibacterial and antifungal analyses in vitro were conducted using the disk diffusion method against Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans var. grubii. The MTT assay was used to determine antiparasitic activity against Leishmania amazonensis and to assess cytotoxicity using differentiated THP-1 macrophages. The extracts demonstrated efficacy against yeasts, especially the stem extract against C. albicans (7.62 mm), and against bacteria, with emphasis on the stem and leaf extracts against M. tuberculosis (both 9 mm). All extracts exhibited high antioxidant capacity, particularly the leaf and stem extracts (both over 92%) and low cytotoxicity (Cytotoxic Concentration - CC50 > 300 µg/mL). No extract was effective against L. amazonensis (Inhibitory Concentration - IC50 > 100 µg/mL). In conclusion, S. adstringens is a potential source of compounds with antibacterial properties (particularly against Gram-positive bacteria) and antifungal activity, with low cytotoxicity and high antioxidant activity. This work emphasizes the use of this plant as a source of molecules for the development of drugs against bacterial and fungal infectious diseases, as well as for combating diseases, such as cancer and neurodegenerative disorders, that are linked to cellular and DNA damage due to oxidative stress.
Collapse
Affiliation(s)
- T C Reis
- Universidade Estadual Paulista "Júlio de Mesquita Filho - UNESP, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas, Araraquara, SP, Brasil
| | - L F de Paiva
- Universidade do Vale do Sapucaí - UNIVAS, Faculdade de Filosofia, Ciências e Letras Eugênio Pacelli, Departamento de Biologia, Pouso Alegre, MG, Brasil
| | - V H M Santos
- Universidade do Vale do Sapucaí - UNIVAS, Faculdade de Filosofia, Ciências e Letras Eugênio Pacelli, Departamento de Biologia, Pouso Alegre, MG, Brasil
| | - C P Gonçalves
- BEEOTEC S/A, Bio ECOmmitted Evolution, Laboratório de Pesquisa em Biodiversidade, Santa Rita do Sapucaí, MG, Brasil
| | - F E C Costa
- BEEOTEC S/A, Bio ECOmmitted Evolution, Laboratório de Pesquisa em Biodiversidade, Santa Rita do Sapucaí, MG, Brasil
| | - R M Pereira
- Universidade do Vale do Sapucaí - UNIVAS, Faculdade de Filosofia, Ciências e Letras Eugênio Pacelli, Departamento de Biologia, Pouso Alegre, MG, Brasil
| |
Collapse
|
2
|
Loukili EH, Ouahabi S, Elbouzidi A, Taibi M, Yahyaoui MI, Asehraou A, Azougay A, Saleh A, Al Kamaly O, Parvez MK, El Guerrouj B, Touzani R, Ramdani M. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:3376. [PMID: 37836118 PMCID: PMC10574104 DOI: 10.3390/plants12193376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils' effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.
Collapse
Affiliation(s)
- El Hassania Loukili
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Safae Ouahabi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Mohamed Taibi
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Meryem Idrissi Yahyaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.I.Y.); (A.A.)
| | - Abdellah Azougay
- Laboratory of Applied Geosciences (LGA), Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.); (O.A.K.)
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy King Saud University, P.O. Box 3660, Riyadh 11481, Saudi Arabia;
| | - Bouchra El Guerrouj
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Mohammed First University, Oujda 60000, Morocco;
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| | - Mohammed Ramdani
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (S.O.); (R.T.); (M.R.)
| |
Collapse
|
3
|
Ouahabi S, Loukili EH, Elbouzidi A, Taibi M, Bouslamti M, Nafidi HA, Salamatullah AM, Saidi N, Bellaouchi R, Addi M, Ramdani M, Bourhia M, Hammouti B. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life (Basel) 2023; 13:1393. [PMID: 37374175 DOI: 10.3390/life13061393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The mastic tree, scientifically known as Pistacia lentiscus, which belongs to the Anacardiaceae family, was used in this study. The aim of this research was to analyze the chemical composition of this plant and assess its antioxidant and antibacterial properties using both laboratory experiments and computer simulations through molecular docking, a method that predicts the binding strength of a small molecule to a protein. The soxhlet method (SE) was employed to extract substances from the leaves of P. lentiscus found in the eastern region of Morocco. Hexane and methanol were the solvents used for the extraction process. The n-hexane extract was subjected to gas chromatography-mass spectrometry (GC/MS) to identify its fatty acid content. The methanolic extract underwent high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to determine the presence of phenolic compounds. Antioxidant activity was assessed using the DPPH spectrophotometric test. The findings revealed that the main components in the n-hexane extract were linoleic acid (40.97 ± 0.33%), oleic acid (23.69 ± 0.12%), and palmitic acid (22.83 ± 0.10%). Catechin (37.05 ± 0.15%) was identified as the predominant compound in the methanolic extract through HPLC analysis. The methanolic extract exhibited significant DPPH radical scavenging, with an IC50 value of 0.26 ± 0.14 mg/mL. The antibacterial activity was tested against Staphylococcus aureus, Listeria innocua, and Escherichia coli, while the antifungal activity was evaluated against Geotrichum candidum and Rhodotorula glutinis. The P. lentiscus extract demonstrated notable antimicrobial effects. Additionally, apart from molecular docking, other important factors, such as drug similarity, drug metabolism and distribution within the body, potential adverse effects, and impact on bodily systems, were considered for the substances derived from P. lentiscus. Scientific algorithms, such as Prediction of Activity Spectra for Substances (PASS), Absorption, Distribution, Metabolism, Excretion (ADME), and Pro-Tox II, were utilized for this assessment. The results obtained from this research support the traditional medicinal usage of P. lentiscus and suggest its potential for drug development.
Collapse
Affiliation(s)
- Safae Ouahabi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - El Hassania Loukili
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Bouslamti
- Laboratories of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Nezha Saidi
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Ramdani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Belkheir Hammouti
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
4
|
Jiang K, Wu Q, Chen Y, Fan D, Chu F. A high-performance bio-based adhesive comprising soybean meal, silk fibroin, and tannic acid inspired by marine organisms. Int J Biol Macromol 2023:125095. [PMID: 37245746 DOI: 10.1016/j.ijbiomac.2023.125095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
The sustainable development of high-performance bio-based adhesives is both important and challenging for the wood industry. Herein, inspired by the hydrophobic property of barnacle cement protein and the adhesive property of mussel adhesion protein, a water-resistant bio-based adhesive was developed from silk fibroin (SF) rich in hydrophobic β-sheet structures and tannic acid (TA) rich in catechol groups as reinforcing components and soybean meal molecules rich in reactive groups as substrates. SF and soybean meal molecules formed a water-resistant tough structure through a multiple cross-linking network including covalent bonds, hydrogen bonds, and dynamic borate ester bonds constructed by TA and borax. The wet bond strength for the developed adhesive achieved 1.20 MPa, exhibiting its excellent application capabilities in humid environments. The storage period of the developed adhesive (72 h) was 3 times that of pure soybean meal adhesive owing to the enhanced mold resistance of the adhesive by TA. Furthermore, the developed adhesive demonstrated excellent biodegradability (45.45 % weight loss in 30 days) and flame retardancy (limiting oxygen index of 30.1 %). Overall, this environmental and efficient biomimetic strategy provides a promising and feasible route to develop high-performance bio-based adhesives.
Collapse
Affiliation(s)
- Ke Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiao Wu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dongbin Fan
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
5
|
Taibi M, Elbouzidi A, Ou-Yahia D, Dalli M, Bellaouchi R, Tikent A, Roubi M, Gseyra N, Asehraou A, Hano C, Addi M, El Guerrouj B, Chaabane K. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics (Basel) 2023; 12:antibiotics12040655. [PMID: 37107017 PMCID: PMC10135233 DOI: 10.3390/antibiotics12040655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography–mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO’s identified compounds’ drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Douaae Ou-Yahia
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
- Laboratory of Microbiology, Faculty of Medicine and Pharmacy, University Mohammed The First, Oujda 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohammed Roubi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Correspondence: (C.H.); (M.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Correspondence: (C.H.); (M.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
6
|
Synergistic activity of Stryphnodendron adstringens and potassium sorbate against foodborne bacteria. Arch Microbiol 2022; 204:292. [PMID: 35503382 DOI: 10.1007/s00203-022-02904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/10/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
Stryphnodendron adstringens is a medicinal plant that has a broad spectrum of action, including antibacterial activity. The aim of the present study was to evaluate the effect of S. adstringens alone and in combination with potassium sorbate (PS) against foodborne bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and, for most of the bacteria tested, the crude extract (CE), aqueous fraction (AQF), and ethyl-acetate fraction (EAF) of S. adstringens had a MIC and MBC ranging from 500 to ≥ 1000 µg/mL. The AQF and EAF showed greater activity against S. aureus strains (MIC = 125 to 250 µg/mL; MBC = 500 to 1000 µg/m). Quantitative cell viability was determined and was observed reductions ranging from 3.0 to 5.8 log10 CFU/ml.The combination of S. adstringens and PS against seven S. aureus isolates was determined by the checkerboard method at neutral and acid pH. In a neutral medium, the AQF + PS combination presented synergistic or additive interactions against six S. aureus strains. The combination of EAF + PS resulted in additive interactions against four bacterial isolates. In an acidic medium, the AQF + PS combination was synergistic or additive against all S. aureus, while EAF + PS presented the same effect against six S. aureus strains S. adstringens showed important antibacterial effects against foodborne S. aureus strains. Moreover, the combination of S. adstringens fractions and PS improved the antibacterial activity compared to the compounds utilized individually. The combined use of these compounds may be an alternative to reduce bacterial food contamination and improve food safety.
Collapse
|
7
|
Kandsi F, Elbouzidi A, Lafdil FZ, Meskali N, Azghar A, Addi M, Hano C, Maleb A, Gseyra N. Antibacterial and Antioxidant Activity of Dysphania ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics (Basel) 2022; 11:482. [PMID: 35453233 PMCID: PMC9031865 DOI: 10.3390/antibiotics11040482] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Dysphania ambrosioides (L.) Mosyakin and Clemants, also known as Mexican tea, and locally known as Mkhinza, is a polymorphic annual and perennial herb, and it is widely used in folk medicine to treat a broad range of illnesses in Morocco. The aim of this study was to determine the phytochemical content and the antioxidant and the antibacterial properties of essential oils isolated from D. ambrosioides aerial components, growing in Eastern Morocco (Figuig). Hydrodistillation was used to separate D. ambrosioides essential oils, and the abundance of each phytocompound was determined by using Gas Chromatography coupled with Mass Spectrometry (GC-MS). In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibition of β-carotene/linoleic acid bleaching assays were used to determine D. ambrosioides essential oils' antioxidant activity. The findings revealed relative antioxidative power and modest radical scavenging. The antibacterial activity of the essential oils was broad-spectrum, with Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis as the most susceptible strains tested. To elucidate the physicochemical nature, drug-likeness, and the antioxidant and antibacterial action of the identified phytocomponents, computational techniques, such as ADMET analysis, and molecular docking were used.
Collapse
Affiliation(s)
- Fahd Kandsi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Fatima Zahra Lafdil
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| | - Nada Meskali
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Ali Azghar
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire (CHU), Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (N.M.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans, CEDEX 2, 45067 Orléans, France
- Le StudiumInstitue for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| | - Adil Maleb
- Laboratoire de Microbiologie, Centre Hospitalier Universitaire (CHU), Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, B.P. 717, Oujda 60000, Morocco; (F.K.); (F.Z.L.); (N.G.)
| |
Collapse
|
8
|
Gomes PW, Pamplona TC, Navegantes-Lima KC, Quadros LB, Oliveira AL, Santos SM, e Silva CY, Silva MJ, Souza JN, Quirós-Guerrero LM, Boutin JA, Monteiro MC, da Silva MN. Chemical composition and antibacterial action of Stryphnodendron pulcherrimum bark extract, “barbatimão” species: Evaluation of its use as a topical agent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Feature-Based Molecular Network-Guided Dereplication of Natural Bioactive Products from Leaves of Stryphnodendron pulcherrimum (Willd.) Hochr. Metabolites 2021; 11:metabo11050281. [PMID: 33946668 PMCID: PMC8147077 DOI: 10.3390/metabo11050281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Stryphnodendron pulcherrimum is a species known to have a high content of tannins. Accordingly, its preparations are used in southern Pará, Brazil, for their anti-inflammatory and antimicrobial activities, but so far, its chemical profile composition remains essentially unknown. We herein describe the compounds present in a hydro-acetonic extract from S. pulcherrimum leaves as revealed by dereplication via ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. The data were combined with spectral organization, spectral matching through the Global Natural Products Social platform, in silico annotation and taxonomical ponderation. Several types of phenolic compounds were identified such as gallic acids, flavan-3-ols and flavone-like compounds. From these, 5 have been recently reported by our group, whereas 44 are reported here for the first time in this tree species, and 41 (out of 49) for this genus. The results highlight the possible role of Stryphnodendron pulcherrimum as a renewable source for natural bioactive products with potential pharmaceutical applications.
Collapse
|