1
|
Gao Y, Zhu W, Lou X, Zhou Q, Tian T, Gong W, Xiong J. Protective effects of Bacillus velezensis on texture, physicochemical properties, and lipid oxidation of grass carp fillets during repeated freeze-thaw cycles. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2497-2505. [PMID: 39529473 DOI: 10.1002/jsfa.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Probiotics have excellent antioxidant and antibacterial effects and are also considered to be promising natural biological preservatives. This study examined the freeze-thaw stability of the antioxidant and antibacterial activity of probiotic Bacillus velezensis PJP10, and evaluated the effect of different concentrations of PJP10 (106, 107, and 108 CFU mL-1) on microbial growth, textural characteristics, physicochemical properties, and lipid oxidation of grass carp fillets during repeated freeze-thaw cycles. RESULTS Freeze-thaw cycles had little effect on the antioxidant and antibacterial stability of PJP10. Treatment with the PJP10 strain slowed effectively the increase in Aeromonas spp. counts (ASC), pH, total volatile basal nitrogen (TVB-N), and thiobarbituric acid (TBA) values of the freeze-thaw fish fillets. It maintained the textural quality of fillets, inhibiting the reduction of hardness, springiness, gumminess, cohesiveness, chewiness, and resilience values, and reduced lipid oxidation, as evidenced by decreased carbonyl values and conjugated diene values after multiple freeze-thaw cycles. CONCLUSION Probiotic B. velezensis PJP10 had protective effects on microbiological, textural, and physicochemical properties, and lipid oxidation of grass carp fillets during repeated freeze-thaw storage, suggesting a potential application of this strain in the freeze-thaw preservation of freshwater fish. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanyan Gao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenwu Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiangdi Lou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangsu Coastal Area Institute of Agricultural Science, Yancheng, China
| | - Qiang Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Tong Tian
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Weitao Gong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jianhua Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
2
|
Zhang L, Han L, Yang J, Sun Q, Li K, Prakash S, Dong X. Preservation strategies for processed grass carp products: Analyzing quality and microbial dynamics during chilled and ice temperature storage. Food Chem X 2024; 23:101428. [PMID: 38978822 PMCID: PMC11228557 DOI: 10.1016/j.fochx.2024.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigated the impact of ice temperature storage on quality and bacterial composition of processed fish paste products (PFP). Freezing curve revealed the ice temperature was -1 °C. Electric nose (e-nose) showed significant changes in volatile components within 8 days. Results of total volatile basic nitrogen (TVB-N) showed that PFP stored at 4 °C reached its limit after 2 days, whereas PFP stored at ice temperature remained stable for 6 days. Thiobarbituric acid reactive substances (TBARS) demonstrated delayed oxidation in PFP stored at ice temperature compared to 4 °C. TCA-soluble peptides indicated that the protein degradation was suppressed by ice temperature. Additionally, ice temperature inhibited microbial growth and altered bacterial composition. High-throughput sequencing revealed that Pseudomonas, Brochothrix, Carnobacterium were dominant at 4 °C, while Acinetobacter, Pseudomonas, Janthinobacterium and Brochothrix were dominant at ice temperature. In summary, ice temperature might be a potential method for maintaining the freshness of PFP.
Collapse
Affiliation(s)
- Lin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Lin Han
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jinye Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qinxiu Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ke Li
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
3
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Multispecies biofilms in fermentation: Biofilm formation, microbial interactions, and communication. Compr Rev Food Sci Food Saf 2022; 21:3346-3375. [PMID: 35762651 DOI: 10.1111/1541-4337.12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023]
Abstract
Food fermentation is driven by microorganisms, which usually coexist as multispecies biofilms. The activities and interactions of functional microorganisms and pathogenic bacteria in biofilms have important implications for the quality and safety of fermented foods. It was verified that the biofilm lifestyle benefited the fitness of microorganisms in harsh environments and intensified the cooperation and competition between biofilm members. This review focuses on multispecies biofilm formation, microbial interactions and communication in biofilms, and the application of multispecies biofilms in food fermentation. Microbial aggregation and adhesion are important steps in the early stage of multispecies biofilm formation. Different biofilm-forming abilities and strategies among microorganisms lead to several types of multispecies biofilm formation. The spatial distribution of multispecies biofilms reflects microbial interactions and biofilm function. Then, we discuss the intrinsic factors and external manifestations of multispecies biofilm system succession. Several typical interspecies cooperation and competition modes and mechanisms of microbial communication were reviewed in this review. The main limitations of the studies included in this review are the relatively small number of studies of biofilms formed by functional microorganisms during fermentation and the lack of direct evidence for the formation process of multispecies biofilms and microbial interactions and communication within biofilms. This review aims to provide the food industry with a sufficient understanding of multispecies biofilms in food fermentation. Practical Application: Meanwhile, it offers a reference value for better controlling and utilizing biofilms during food fermentation process, and the improvement of the yield, quality, and safety of fermented products including Chinese Baijiu, cheeese,kefir, soy sauce, kombucha, and fermented olive.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li M, Shi JN, You GM, Ma YS, Zhao QC. Characterization of bacterial communities in Coregonus peled fillets during chilled storage and interactions between selected bacterial strains. J Appl Microbiol 2022; 132:4359-4370. [PMID: 35393712 DOI: 10.1111/jam.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
AIM Coregonus peled fillets were used as a model to evaluate the dominant bacterial growth of chilled fish during storage after shipping and interactions of selected bacterial strains. METHODS AND RESULTS C. peled fillets were transported by air and land in ice boxes about 48 h from aquatic products company in Xinjiang, China to the laboratory located in Dalian, China. Both culture-dependent methods (plate counts on nonselective media) based on 16S rRNA gene sequencing and culture-independent methods (Illumina-MiSeq high-throughput sequencing) were used. To detect interactions among bacterial populations from chilled fish, the influence of 18 test strains on the growth of 12 indicator isolates was measured by a drop assay and in liquid culture medium broth. The results showed that bacterial counts exceeded 7.0 log CFU/g following 4 days storage at 4 °C. When the bacterial counts exceeded 8.5 log CFU/g after 12 days, the predominant microorganisms were Aeromonas, Pseudomonas, Carnobacterium, Psychrobacter and Shewanella, as measured by culture-independent methods. All test strains showed inhibiting effects on the growth of other strains in liquid culture. Pseudomonas isolates showed antibacterial activity for approximately 60% of the indicator strains on nutritional agar plates. The majority of test isolates enhancing indicator strain growth were the strains isolated on day 0. CONCLUSIONS High-throughput sequencing approach gives whole picture of bacterial communities in C.peled fillets during storage, while growth interferences between selected bacterial strains illustrate the complexity of microbial interactions. SIGNIFICANCE AND IMPACT OF THE STUDY We determined the bacterial communities and growth interferences in chilled C.peled after shipping and these are the first data concerning microbiota in C.peled using a culture-independent analysis. The present study will be useful for manufacture and preservation of C.peled products by providing with valuable information regarding microbiological spoilage of C.peled.
Collapse
Affiliation(s)
- Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jia-Ning Shi
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Gao-Ming You
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Yong-Sheng Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qian-Cheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China.,Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Zhang W, Tong Q, You J, Lv X, Liu Z, Ni L. The Application of Bacillus subtilis for Adhesion Inhibition of Pseudomonas and Preservation of Fresh Fish. Foods 2021; 10:foods10123093. [PMID: 34945644 PMCID: PMC8701017 DOI: 10.3390/foods10123093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/28/2023] Open
Abstract
Inhibiting the growth of spoilage bacteria, such as Pseudomonas spp., is key to reducing spoilage in fish. The mucus adhesion test in vitro showed that the adhesion ability of Bacillus subtilis was positively correlated with its inhibition ability to Pseudomonas spp. In vivo experiments of tilapia showed that dietary supplementation with B. subtilis could reduce the adhesion and colonization of Pseudomonas spp. in fish intestines and flesh, as well as reduce total volatile basic nitrogen (TVB-N) production. High throughput and metabolomic analysis showed treatment with B. subtilis, especially C6, reduced the growth of Pseudomonas spp., Aeromonas spp., Fusobacterium spp., and Enterobacterium spp., as well as aromatic spoilage compounds associated with these bacteria, such as indole, 2,4-bis(1,1-dimethylethyl)-phenol, 3-methyl-1-butanol, phenol, and 1-octen-3-ol. Our work showed that B. subtilis could improve the flavor of fish by changing the intestinal flora of fish, and it shows great promise as a microecological preservative.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Ni
- Correspondence: ; Tel.: +86-591-22866378
| |
Collapse
|