1
|
Liu M, Ge W, Zhong G, Yang Y, Xun L, Xia Y. Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. ACS Synth Biol 2024; 13:3523-3538. [PMID: 39418641 DOI: 10.1021/acssynbio.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10-3 per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA+ strain MG1655 and the RecA- strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology.
Collapse
Affiliation(s)
- Menghui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Ge
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266024, People's Republic of China
| | - Guomei Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Xuan G, Ning H, Kong J, Lin H, Wang J. Tn5 Transposon-based Mutagenesis for Engineering Phage-resistant Strains of Escherichia coli BL21 (DE3). J Microbiol 2023:10.1007/s12275-023-00048-2. [PMID: 37213024 DOI: 10.1007/s12275-023-00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli is a preferred strain for recombinant protein production, however, it is often plagued by phage infection during experimental studies and industrial fermentation. While the existing methods of obtaining phage-resistant strains by natural mutation are not efficient enough and time-consuming. Herein, a high-throughput method by combining Tn5 transposon mutation and phage screening was used to produce Escherichia coli BL21 (DE3) phage-resistant strains. Mutant strains PR281-7, PR338-8, PR339-3, PR340-8, and PR347-9 were obtained, and they could effectively resist phage infection. Meanwhile, they had good growth ability, did not contain pseudolysogenic strains, and were controllable. The resultant phage-resistant strains maintained the capabilities of producing recombinant proteins since no difference in mCherry red fluorescent protein expression was found in phage-resistant strains. Comparative genomics showed that PR281-7, PR338-8, PR339-3, and PR340-8 mutated in ecpE, nohD, nrdR, and livM genes, respectively. In this work, a strategy was successfully developed to obtain phage-resistant strains with excellent protein expression characteristics by Tn5 transposon mutation. This study provides a new reference to solve the phage contamination problem.
Collapse
Affiliation(s)
- Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Houqi Ning
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Xuan G, Lin H, Fei Z, Wang J. Phage resistance of Salmonella enterica obtained by transposon Tn5-mediated SefR gene silent mutation. J Basic Microbiol 2023; 63:530-541. [PMID: 37032321 DOI: 10.1002/jobm.202200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/05/2023] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Salmonella enterica contamination is a primary cause of global food poisoning. Using phages as bactericidal alternatives to antibiotics could confront the issue of drug resistance. However, the problem of phage resistance, especially mutant strains with multiple phage resistance, is a critical barrier to the practical application of phages. In this study, a library of EZ-Tn5 transposable mutants of susceptible host S. enterica B3-6 was constructed. After the infestation pressure of a broad-spectrum phage TP1, a mutant strain with resistance to eight phages was obtained. Analysis of the genome resequencing results revealed that the SefR gene was disrupted in the mutant strain. The mutant strain displayed a reduced adsorption rate of 42% and a significant decrease in swimming and swarming motility, as well as a significantly reduced expression of the flagellar-related FliL and FliO genes to 17% and 36%, respectively. An uninterrupted form of the SefR gene was cloned into vector pET-21a (+) and used for complementation of the mutant strain. The complemented mutant exhibited similar adsorption and motility as the wild-type control. These results suggest that the disrupted flagellar-mediated SefR gene causes an adsorption inhibition, which is responsible for the phage-resistant phenotype of the S. enterica transposition mutant.
Collapse
Affiliation(s)
- Yinfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Guanhua Xuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zhenhong Fei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
4
|
Weihmann R, Kubicki S, Bitzenhofer NL, Domröse A, Bator I, Kirschen LM, Kofler F, Funk A, Tiso T, Blank LM, Jaeger KE, Drepper T, Thies S, Loeschcke A. The modular pYT vector series employed for chromosomal gene integration and expression to produce carbazoles and glycolipids in P. putida. FEMS MICROBES 2022; 4:xtac030. [PMID: 37333445 PMCID: PMC10117823 DOI: 10.1093/femsmc/xtac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 10/22/2023] Open
Abstract
The expression of biosynthetic genes in bacterial hosts can enable access to high-value compounds, for which appropriate molecular genetic tools are essential. Therefore, we developed a toolbox of modular vectors, which facilitate chromosomal gene integration and expression in Pseudomonas putida KT2440. To this end, we designed an integrative sequence, allowing customisation regarding the modes of integration (random, at attTn7, or into the 16S rRNA gene), promoters, antibiotic resistance markers as well as fluorescent proteins and enzymes as transcription reporters. We thus established a toolbox of vectors carrying integrative sequences, designated as pYT series, of which we present 27 ready-to-use variants along with a set of strains equipped with unique 'landing pads' for directing a pYT interposon into one specific copy of the 16S rRNA gene. We used genes of the well-described violacein biosynthesis as reporter to showcase random Tn5-based chromosomal integration leading to constitutive expression and production of violacein and deoxyviolacein. Deoxyviolacein was likewise produced after gene integration into the 16S rRNA gene of rrn operons. Integration in the attTn7 site was used to characterise the suitability of different inducible promoters and successive strain development for the metabolically challenging production of mono-rhamnolipids. Finally, to establish arcyriaflavin A production in P. putida for the first time, we compared different integration and expression modes, revealing integration at attTn7 and expression with NagR/PnagAa to be most suitable. In summary, the new toolbox can be utilised for the rapid generation of various types of P. putida expression and production strains.
Collapse
Affiliation(s)
- Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lisa-Marie Kirschen
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Franziska Kofler
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Aileen Funk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Till Tiso
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
5
|
Huang J, Liu H, Xu X. Homologous recombination risk in baculovirus expression vector system. Virus Res 2022; 321:198924. [PMID: 36089109 DOI: 10.1016/j.virusres.2022.198924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The baculovirus expression vector system (BEVS) is widely used for producing recombinant proteins. To achieve high expression level of recombinant proteins, baculoviral elements, such as enhancers, promoters, signal peptide coding sequences and 3'-UTR, have been extensively employed. There is a recombination risk derived from homologous sequences between viral genome and functional baculovirus-derived elements associated with foreign genes. Although homologous recombination have distinct biological functions, these potential adverse recombination may trigger a DNA fragment being inverted or looped out, resulting in the production of defective viruses and eventual yields declines of recombinant proteins. However, the risk of such homologous recombination has not been systematically assessed. Here, we measured the recombination rate using a promoter-less fluorescent reporter integrated with various lengths homologous of p10 coding region. Homologous fragments longer than 60 bp possess sufficient recombination probability and exerts effect on purity and integrity of virus. Shortening the length of homologous fragments and separating homologous fragments by point mutations can effectively reduce unfavorable recombination. These findings reveal a homologous recombination risk resulted from genome-homologous baculoviral elements and propose reliable strategies reducing recombination rate to facilitate viral stability and integrity in baculovirus expression vector system.
Collapse
Affiliation(s)
- Jianan Huang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Huanlei Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria. Curr Opin Biotechnol 2022; 77:102782. [PMID: 36049254 DOI: 10.1016/j.copbio.2022.102782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia β-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.
Collapse
Affiliation(s)
- Barbara I Adaikpoh
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hannah N Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|