1
|
Gafar MA, Omolo CA, Ibrahim UH, Elamin G, Tageldin A, Elhassan E, Ismail EA, Mackraj I, Govender T. Hyaluronic acid-silybin conjugate for the preparation of multifunctional, biomimetic, vancomycin-loaded self-assembled polymersomes against bacterial sepsis. Int J Biol Macromol 2025; 299:140152. [PMID: 39855529 DOI: 10.1016/j.ijbiomac.2025.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and 1H NMR. The biomimetic properties of HA-SIL were confirmed via in silico (-73.35 kcal/mol) and in vitro (dissociation constant = 2.872 μM) binding affinity studies against TLR2. VCM-HA-SIL-Ps exhibited appropriate physicochemical properties, biocompatibility, and stability. VCM-HA-SIL-Ps sustained VCM release for 48 h, achieving 73.38 % cumulative release. In vitro antibacterial studies showed that VCM-HA-SIL-Ps had superior minimum inhibitory concentration against sensitive and resistant Staphylococcus aureus and faster bacterial killing, compared to free VCM. Additionally, VCM-HA-SIL-Ps demonstrated excellent DPPH radicals scavenging and effective anti-inflammatory activity on bacterial toxin-stimulated cells. Finally, in a mouse model of MRSA-induced sepsis, VCM-HA-SIL-Ps achieved 100 % bacterial eradication, significantly reduced pro-inflammatory markers (IL-6, TNF-α, IL-1β by 2.9-, 1.8-, and 5-fold, respectively), and minimized organ damage. Collectively, these findings demonstrate the potential of HA-SIL as a novel multifunctional adjuvant for effective antibiotic delivery against bacterial sepsis.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, P. O. Box 1996, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, PO Box 11111, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
2
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 PMCID: PMC11891642 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| |
Collapse
|
3
|
Shao K, Yang Y, Gong X, Chen K, Liao Z, Ojha SC. Staphylococcal Drug Resistance: Mechanisms, Therapies, and Nanoparticle Interventions. Infect Drug Resist 2025; 18:1007-1033. [PMID: 39990781 PMCID: PMC11847421 DOI: 10.2147/idr.s510024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
The increasing incidence of antibiotic resistance in Staphylococcus aureus (S. aureus) poses a substantial threat to global public health. In recent decades, the evolution of bacteria and the misuse of antibiotics have led to a progressive development in drug resistance of S. aureus, resulting in a worldwide rise in methicillin-resistant S. aureus (MRSA) infection rates. Understanding the molecular mechanisms underlying staphylococcal drug resistance, the treatments for staphylococcal infections, and the efficacy of nanomaterials in addressing multi-drug resistance is crucial. This review explores the resistance mechanisms, which include limiting drug uptake, target modification, drug inactivation through the production of degrading enzymes, and active efflux of drugs. It also examines the current therapeutic strategies, such as antibiotic combination therapy, phage therapy, monoclonal antibody therapy, and nanoparticle therapy, with a particular emphasis on the role of silver-based nanomaterials. Nanoparticles possess the ability to overcome multi-drug resistance, offering a novel avenue for the management of drug-resistant bacteria. The nanomaterials have demonstrated potent antibacterial activity against S. aureus through various mechanisms, including cell membrane disruption, generation of reactive oxygen species (ROS), and inhibition of essential cellular processes. It also highlights the need for further research to optimize nanoparticle design, enhance their antibacterial potency, and ensure their biocompatibility and biodegradability. The review ultimately concludes by emphasizing the importance of a multifaceted approach to treatment, including the development of new antibiotics, investment in stewardship programs to prevent antibiotic misuse, and the exploration of natural compounds and bacteriocins as potential antimicrobial agents.
Collapse
Affiliation(s)
- Kunyu Shao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuxun Yang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuankai Gong
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Chen
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zixiang Liao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
4
|
Ni L, Shen R, Luo H, Li X, Zhang X, Huang L, Deng Y, Liao X, Wu Y, Duan C, Xie X. GlmS plays a key role in the virulence factor expression and biofilm formation ability of Staphylococcus aureus promoted by advanced glycation end products. Virulence 2024; 15:2352476. [PMID: 38741276 PMCID: PMC11095574 DOI: 10.1080/21505594.2024.2352476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.
Collapse
Affiliation(s)
- Lijia Ni
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Shen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua Luo
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuexue Li
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofan Zhang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yawen Deng
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Liao
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Wu
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Xie
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institution of Antibiotic, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hagimori M, Hara F, Mizuyama N, Takada S, Hayashi S, Haraguchi T, Hatanaka Y, Nagao T, Tanaka S, Yoshii M, Yoshida M. Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3- d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains. Molecules 2024; 29:2777. [PMID: 38930841 PMCID: PMC11206905 DOI: 10.3390/molecules29122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole-4,9-dione compounds (5a-e) in moderate-to-good yields. The photophysical properties and antimicrobial activities of these compounds (5a-e) were then characterized. Owing to the extended π-conjugated system of naphtho[2,3-d]thiazole-4,9-dione skeleton and substituent effect, 5a-e showed fluorescence both in solution and in the solid state. The introduction of nitrogen-containing heterocycles at position 2 of the thiazole ring on naphtho[2,3-d]thiazole-4,9-dione led to large bathochromic shifts in solution, and 5b-e exhibited orange-red fluorescence with emission maxima of over 600 nm in highly polar solvents. Staphylococcus aureus (S. aureus) is a highly pathogenic bacterium, and infection with its antimicrobial-resistant pathogen methicillin-resistant S. aureus (MRSA) results in serious clinical problems. In this study, we also investigated the antimicrobial activities of 5a-e against S. aureus, MRSA, and S. epidermidis. Compounds 5c with thiomorpholine group and 5e with 4-methylpiperazine group showed potent antimicrobial activity against these bacteria. These results will lead to the development of new fluorescent dyes with antimicrobial activity in the future.
Collapse
Affiliation(s)
- Masayori Hagimori
- Department of Analitical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (F.H.); (S.T.)
| | - Fumiko Hara
- Department of Analitical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (F.H.); (S.T.)
| | - Naoko Mizuyama
- Division of Medical Innovation, Translational Research Center for Medical Innovation, 1-5-4 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan;
| | - Shinya Takada
- Department of Analitical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (F.H.); (S.T.)
| | - Saki Hayashi
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.)
| | - Tamami Haraguchi
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.)
- Institute for Women’s Career Advancement and Gender Equality Development, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya City 663-8558, Hyogo, Japan
| | - Yoshiro Hatanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (T.N.); (S.T.); (M.Y.)
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (T.N.); (S.T.); (M.Y.)
| | - Shigemitsu Tanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (T.N.); (S.T.); (M.Y.)
| | - Miki Yoshii
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka City 536-8553, Osaka, Japan; (Y.H.); (T.N.); (S.T.); (M.Y.)
| | - Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien 9-Bancho, Nishinomiya City 663-8179, Hyogo, Japan; (S.H.); (T.H.)
- Institute for Women’s Career Advancement and Gender Equality Development, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya City 663-8558, Hyogo, Japan
| |
Collapse
|
6
|
Okabe K, Chikasue K, Murakami K, Matsuda N, Yamada S. Suppressed distribution of protein A on the surface of Staphylococcus aureus as a morphological characteristic of erythromycin-resistant strain. Med Mol Morphol 2024; 57:101-109. [PMID: 38386083 DOI: 10.1007/s00795-023-00379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
To identify a new morphological phenotype of erythromycin (EM)-resistant Staphylococcus aureus (S. aureus) were isolated in vitro from EM-sensitive parent strain, and the distribution of staphylococcus specific protein A (SpA) on the surface of these strains was examined morphologically by using applied immunoelectron microscopy. The isolated EM-resistant strains had thickened cell walls, and the distribution of SpA on the surfaces of these strains was demonstrated to be lower than that of the parent strain. The SpA suppression was confirmed by enzyme-linked immunosorbent assay (ELISA) using fixed EM-resistant cells. Moreover, the spa gene of EM-resistant cells was detected by polymerase chain reaction (PCR) and confirmed by quantitative real-time PCR assay, showing that the expression of SpA was repressed at the transcriptional level in these strains. Furthermore, ELISA assay showed that whole EM-resistant cell SpA content was significantly decreased. Therefore, it was considered that the suppression of surface SpA on the EM-resistant strain was due to regulated SpA production, and not dependent on the conformational change in SpA molecule expression through cell wall thickening. These results strongly suggest that suppressed SpA distribution on the EM-resistant S. aureus is a phenotypical characteristic in these strains.
Collapse
Affiliation(s)
- Kanako Okabe
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Kumiko Chikasue
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Keiji Murakami
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Nobuaki Matsuda
- Electron Microscope Center, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan
| | - Sakuo Yamada
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| |
Collapse
|
7
|
Fait A, Silva SF, Abrahamsson JÅH, Ingmer H. Staphylococcus aureus response and adaptation to vancomycin. Adv Microb Physiol 2024; 85:201-258. [PMID: 39059821 DOI: 10.1016/bs.ampbs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is an increasing challenge for the human pathogen Staphylococcus aureus. Methicillin-resistant S. aureus (MRSA) clones have spread globally, and a growing number display decreased susceptibility to vancomycin, the favoured antibiotic for treatment of MRSA infections. These vancomycin-intermediate S. aureus (VISA) or heterogeneous vancomycin-intermediate S. aureus (hVISA) strains arise from accumulation of a variety of point mutations, leading to cell wall thickening and reduced vancomycin binding to the cell wall building block, Lipid II, at the septum. They display only minor changes in vancomycin susceptibility, with varying tolerance between cells in a population, and therefore, they can be difficult to detect. In this review, we summarize current knowledge of VISA and hVISA. We discuss the role of genetic strain background or epistasis for VISA development and the possibility of strains being 'transient' VISA with gene expression changes mediated by, for example, VraTSR, GraXSR, or WalRK signal transduction systems, leading to temporary vancomycin tolerance. Additionally, we address collateral susceptibility to other antibiotics than vancomycin. Specifically, we estimate how mutations in rpoB, encoding the β-subunit of the RNA polymerase, affect overall protein structure and compare changes with rifampicin resistance. Ultimately, such in-depth analysis of VISA and hVISA strains in terms of genetic and transcriptional changes, as well as changes in protein structures, may pave the way for improved detection and guide antibiotic therapy by revealing strains at risk of VISA development. Such tools will be valuable for keeping vancomycin an asset also in the future.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Stephanie Fulaz Silva
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Weng Z, Zeng F, Wang M, Guo S, Tang Z, Itagaki K, Lin Y, Shen X, Cao Y, Duan JA, Wang F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J Adv Res 2024; 57:197-212. [PMID: 37137428 PMCID: PMC10918359 DOI: 10.1016/j.jare.2023.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zebin Weng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Minxin Wang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhijuan Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kiyoshi Itagaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yajuan Lin
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaqi Cao
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Ao Duan
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Dengler Haunreiter V, Tarnutzer A, Bär J, von Matt M, Hertegonne S, Andreoni F, Vulin C, Künzi L, Menzi C, Kiefer P, Christen P, Vorholt JA, Zinkernagel AS. C-di-AMP levels modulate Staphylococcus aureus cell wall thickness, response to oxidative stress, and antibiotic resistance and tolerance. Microbiol Spectr 2023; 11:e0278823. [PMID: 37948390 PMCID: PMC10715141 DOI: 10.1128/spectrum.02788-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Antibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical Staphylococcus aureus isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in S. aureus mutant strains. As a consequence, an increase in resistance to cell wall targeting antibiotics, such as oxacillin and fosfomycin as well as in tolerance to ceftaroline, a cephalosporine used to treat methicillin-resistant S. aureus infections, was observed. These findings underline the importance of investigating the role of c-di-AMP in the development of tolerance and resistance to antibiotics in order to optimize treatment in the clinical setting.
Collapse
Affiliation(s)
- Vanina Dengler Haunreiter
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuela von Matt
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lisa Künzi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen Menzi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Han W, Camesano TA. LL37-Derived Fragments Improve the Antibacterial Potential of Penicillin G and Ampicillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1398. [PMID: 37760695 PMCID: PMC10525415 DOI: 10.3390/antibiotics12091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a severe threat to public health. Antimicrobial peptides (AMPs) are novel and potential antimicrobials with specific antibacterial mechanisms. Our aim was to study the potential of LL37, FK16, and FK13 to enhance the anti-MRSA activity of antibiotics in vitro, particularly penicillin G and ampicillin. Our results showed that FK16 and FK13 have more synergistic inhibitory effects to MRSA strains when combined with penicillin G and ampicillin. In addition, AMPs exhibited strong membrane permeabilizing properties, and membrane permeabilizing effects can provide a possible explanation for the improved antibacterial effects of antibiotics, since permeabilizing AMPs have the potential to increase the access of antibiotics. To further study the electrostatic interactions among cationic AMPs with negatively charged bacteria, we measured the zeta potentials of three MRSA strains and also neutralized three MRSA strains with the addition of cationic AMPs. Further, we demonstrated the connection between membrane permeabilization and zeta potential neutralization. Finally, we treated MRSA strains with AMPs and characterized the MICs of penicillin G and ampicillin. FK16 was the most promising AMP among the three AMPs, since exposure to FK16 decreased the MICs of both penicillin G and ampicillin for all MRSA strains and also demonstrated more synergistic combinations when combined with antibiotics. AMP exposure and subsequent membrane permeabilization provide a possible pathway to re-sensitize drug-resistant bacteria to traditional antibiotics. Re-sensitization may help preserve the effectiveness of traditional antibiotics, thus providing a potential new strategy for fighting MRSA infections.
Collapse
Affiliation(s)
| | - Terri A. Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA;
| |
Collapse
|
11
|
Rozaini AZA, Abdulhameed A, Deivasigamani R, Nadzreen N, Zin NM, Kayani AA, Buyong MR. Dielectrophoresis microbial characterization and isolation of Staphylococcus aureus based on optimum crossover frequency. Electrophoresis 2023; 44:1220-1233. [PMID: 37259263 DOI: 10.1002/elps.202200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 06/02/2023]
Abstract
Characterization of antibiotic-resistant bacteria is a significant concern that persists for the rapid classification and analysis of the bacteria. A technology that utilizes the manipulation of antibiotic-resistant bacteria is key to solving the significant threat of these pathogenic bacteria by rapid characterization profile. Dielectrophoresis (DEP) can differentiate between antibiotic-resistant and susceptible bacteria based on their physical structure and polarization properties. In this work, the DEP response of two Gram-positive bacteria, namely, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-susceptible S. aureus (MSSA), was investigated and simulated. The DEP characterization was experimentally observed on the bacteria influenced by oxacillin and vancomycin antibiotics. MSSA control without antibiotics has crossover frequencies (f x 0 ${f_{x0}}$ ) from 6 to 8 MHz, whereas MRSA control is from 2 to 3 MHz. Thef x 0 ${f_{x0}}$ changed when bacteria were exposed to the antibiotic. As for MSSA, thef x 0 ${f_{x0}}$ decreased to 3.35 MHz compared tof x 0 ${f_{x0}}$ MSSA control without antibiotics, MRSA,f x 0 ${f_{x0}}$ increased to 7 MHz when compared to MRSA control. The changes in the DEP response of MSSA and MRSA with and without antibiotics were theoretically proven using MyDEP and COMSOL simulation and experimentally based on the modification to the bacteria cell walls. Thus, the DEP response can be employed as a label-free detectable method to sense and differentiate between resistant and susceptible strains with different antibiotic profiles. The developed method can be implemented on a single platform to analyze and identify bacteria for rapid, scalable, and accurate characterization.
Collapse
Affiliation(s)
- Arash Zulkarnain Ahmad Rozaini
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Abdullah Abdulhameed
- Center for Communication Systems and Sensing, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nurulhuda Nadzreen
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Noraziah Mohamad Zin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
- ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Zhang Q, Zhou H, Jiang P, Xiao X. Metal-based nanomaterials as antimicrobial agents: A novel driveway to accelerate the aggravation of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131658. [PMID: 37209560 DOI: 10.1016/j.jhazmat.2023.131658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The consequences of antibiotic tolerance directly affect human health and result in socioeconomic loss. Nanomaterials as antimicrobial agents are considered a promising alternative to antibiotics and have been blended with various medical applications. However, with increasing evidence that metal-based nanomaterials may induce antibiotic tolerance, there is an urgent need to scrutinize how nanomaterial-induced microbial adaption affects the evolution and spread of antibiotic tolerance. Accordingly, within this investigation, we summarized the principal factors influencing the resistance development exposed to metal-based nanomaterials, including physicochemical properties, exposure scenario, as well as bacterial response. Furthermore, the mechanisms of metal-based nanomaterial-induced antibiotic resistance development were comprehensively elucidated from acquired resistance by horizontal transfer of antibiotic resistance genes (ARGs), intrinsic resistance by genetic mutation or upregulated resistance-related gene expression, and adaptive resistance by global evolution. Overall, our review raises concerns about the safety of nanomaterials as antimicrobial agents, which will facilitate assistance in the safe development of antibiotic-free antibacterial strategies.
Collapse
Affiliation(s)
- Qiurong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Huixian Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Jiang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
13
|
Cheruvanachari P, Pattnaik S, Mishra M, Pragyandipta P, Pattnaik A, Naik PK. Deciphering the antibiofilm potential of 2-Phenylethyl methyl ether (PEME), a bioactive compound of Kewda essential oil against Staphylococcus aureus. Microb Pathog 2023; 179:106093. [PMID: 37004966 DOI: 10.1016/j.micpath.2023.106093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Opportunistic pathogenic bacteria and their pathogenicity linked with biofilm infections become a severe issue as they resist the actions of multiple antimicrobial drugs. Naturally derived drugs having antibiofilm properties are more effective than chemically synthesized drugs. The plant derived essential oils are a rich source of phytoconstituents with widespread pharmacological values. In the present investigation, a major phytoconstituent, 2-Phenyl Ethyl Methyl Ether (PEME) of Kewda essential oil extracted from the flowers of Pandanus odorifer was explored for its prospective antimicrobial and anti-biofilm properties against ESKAPE pathogenic bacterial strain, Staphylococcus aureus and MTCC 740. The minimum inhibitory concentration (MIC) of PEME was found to be 50 mM against the tested bacterial strains. A gradual decrease in biofilm production was observed when PEME was treated with the sub-MIC concentration. The reduction in biofilm formation was noticeable from qualitative assay i.e., Congo Red Agar Assay (CRA) and further quantified by crystal violet staining assay. The decline in exopolysaccharides production was quantified, with the highest inhibition against MTCC 740 with a decrease of 71.76 ± 4.56% compared to untreated control. From the microscopic analysis (light and microscopic fluorescence method), PEME exhibited inhibitory effect on biofilm formation on the polystyrene surface. The In silico studies stated that PEME could invariably bind to biofilm associated target proteins. Further, transcriptomic data analysis suggested the role of PEME in the down-regulation of specific genes, agrA, sarA, norA and mepR, which are critically associated with bacterial virulence, biofilm dynamics and drug resistance patterns in S. aureus. Further, qRT-PCR analysis validated the role of PEME on biofilm inhibition by relative downregulation of agrA, sarA, norA and mepR genes. Further, advanced in silico methodologies could be employed in future investigations to validate its candidature as promising anti-biofilm agent.
Collapse
|