1
|
Feng L, Wu TZ, Guo XR, Wang YJ, Wang XJ, Liu SX, Zhang R, Ma Y, Tan NH, Bian JL, Wang Z. Discovery of Natural Resorcylic Acid Lactones as Novel Potent Copper Ionophores Covalently Targeting PRDX1 to Induce Cuproptosis for Triple-Negative Breast Cancer Therapy. ACS CENTRAL SCIENCE 2025; 11:357-370. [PMID: 40028362 PMCID: PMC11869127 DOI: 10.1021/acscentsci.4c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer. Cuproptosis, a novel identified cell death form, is triggered by the direct binding of copper to lipoylated components of the tricarboxylic acid cycle. Identifying new effective drug targets and copper ionophores inducing cuproptosis for TNBC therapy is an urgent clinical need. In this study, a total of 24 resorcylic acid lactones (RALs, 1-24), including 9 previously unreported ones, were isolated from the endophyte Ilyonectria sp. Various assays demonstrated that pochonin D (16, PoD) effectively inhibited the proliferation of TNBC cells in vivo and in vitro. Further investigations, including transcriptomics, proteomics, bioinformatics analysis, CMap, OTTER, clinical samples, and the use of PoD as molecular probe, revealed that PRDX1 is associated with cuproptosis and served as a potential target in TNBC. Mechanistically, PRDX1 was involved in the process of cuproptosis, and PoD bound to the Cys173 site of PRDX1, inhibited its enzymatic activity, and intervened with cuproptosis, thereby exerting anti-TNBC activity. Our study revealed that PRDX1 is not only a promising biomarker associated with cuproptosis but also a therapeutic target for TNBC, and PoD is a novel copper ionophore capable of inducing cuproptosis in TNBC cells by targeting PRDX1.
Collapse
Affiliation(s)
- Li Feng
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ti-Zhi Wu
- State
Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin-Rui Guo
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Jie Wang
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin-Jia Wang
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shao-Xuan Liu
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Ma
- State
Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ning-Hua Tan
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jin-Lei Bian
- State
Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhe Wang
- State
Key Laboratory of Natural Medicines, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Feng L, Wang X, Guo X, Shi L, Su S, Li X, Wang J, Tan N, Ma Y, Wang Z. Identification of Novel Target DCTPP1 for Colorectal Cancer Therapy with the Natural Small-Molecule Inhibitors Regulating Metabolic Reprogramming. Angew Chem Int Ed Engl 2024; 63:e202402543. [PMID: 39143504 DOI: 10.1002/anie.202402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/04/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Identification of new effective drug targets for CRC and exploration of bioactive small-molecules are clinically urgent. The human dCTP pyrophosphatase 1 (DCTPP1) is a newly identified pyrophosphatase regulating the cellular nucleotide pool but remains unexplored as potential target for CRC treatment. Here, twelve unprecedented chemical architectures terpene-nonadride heterodimers (1-12) and their monomers (13-20) were isolated from endophyte Bipolaris victoriae S27. Compounds 1-12 represented the first example of terpene-nonadride heterodimers, in which nonadride monomers of 1 and 2 were also first example of 5/6 bicyclic nonadrides. A series of assays showed that 2 could repress proliferation and induce cell cycle arrest, apoptotic and autophagic CRC cell death in vitro and in vivo. Clinical cancer samples data revealed that DCTPP1 was a novel target associated with poor survival in CRC. DCTPP1 was also identified as a new target protein of 2. Mechanically, compound 2 bound to DCTPP1, inhibited its enzymatic activity, intervened with amino acid metabolic reprogramming, and exerted anti-CRC activity. Our study demonstrates that DCTPP1 was a novel potential biomarker and therapeutic target for CRC, and 2 was the first natural anti-CRC drug candidate targeting DCTPP1.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinjia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinrui Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Liyuan Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Shihuang Su
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Xinjing Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Jia Wang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Yi Ma
- State Key Laboratory of Natural Medicines, School of Engineering, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Wacira TN, Makonde HM, Bosire CM, Kibiti CM. Molecular Characterization and Antibacterial Potential of Endophytic Fungal Isolates from Selected Mangroves along the Coastline of Kenya. Int J Microbiol 2024; 2024:1261721. [PMID: 39280854 PMCID: PMC11398959 DOI: 10.1155/2024/1261721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing emergence and re-emergence of resistant pathogenic microbes causes a health threat to the human population. Scientists have been striving to find novel bioactive compounds and drugs to overcome these obstacles. This study aimed to characterize mangrove endophytic fungi and evaluate their antibacterial activity. Heritiera littoralis, Rhizophora mucronata, Bruguiera gymnorrhiza, Avicennia marina, and Xylocarpus granatum species were collected from Tudor Creek, Mida Creek, and Gazi Bay. A total of 30 fungal isolates were subjected to molecular identification based on analysis of their ITS gene region. The isolates in the inferred phylogenetic trees were affiliated with the genus Aspergillus. Ethyl acetate and butanol crude extracts of 38.2% of the 76 isolated fungal endophytes and eight mycelia samples were screened for antibacterial activity against Staphylococcus aureus (ATCC 27853), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 25923) using the disc diffusion method. A. marina and R. mucronata harbored the most fungal endophytes that showed the highest antibacterial activity. Seven fungal broth extracts exhibited higher antibacterial activities against the tested microorganisms than the positive control. The minimum inhibitory concentration (MIC) activity for the isolates demonstrated that the ethyl acetate extract of a root endophytic fungal isolate (RC6) (3.31 ± 0.01) of A. marina is a strong inhibitor since it showed significantly lower MIC activity compared to the positive control (3.84 ± 0.00) against Pseudomonas aeruginosa (P < 0.05). Therefore, this study confirms that mangrove species harbor fungal isolates that have antibacterial activity and hence could serve as a novel source of antibiotics. It is recommended that the pure compounds from these extracts be isolated for further bioactivity tests and structural elucidation for consideration as lead molecules in drug discovery. In addition, the genes responsible for the enhanced bioactivity in these isolates can be characterized and bioengineered for pharmaceutical application.
Collapse
Affiliation(s)
- Teresia Nyambura Wacira
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
- Kenya Marine and Fisheries Research Institute P.O. Box 1881-40100, Kisumu, Kenya
| | - Huxley Mae Makonde
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Carren Moraa Bosire
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| | - Cromwell Mwiti Kibiti
- Department of Pure and Applied Sciences Technical University of Mombasa P.O. Box 90420-80100, Mombasa, Kenya
| |
Collapse
|
4
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Wang XJ, Wang Z, Han J, Su SH, Gong YX, Zhang Y, Tan NH, Wang J, Feng L. Sativene Sesquiterpenoids from the Plant Endophytic Fungus Bipolaris victoriae S27 and Their Potential as Plant-Growth Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2598-2611. [PMID: 38227461 DOI: 10.1021/acs.jafc.3c05815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Thirteen new sativene sesquiterpenoids (1 and 3-14), one new natural product (2), and 16 known compounds (15-30) were isolated from the endophytic fungus Bipolaris victoriae S27. Their structures were elucidated by extensive spectroscopic analysis, NMR and ECD calculations, and X-ray crystal diffractions. Compound 1 represented the first example of sativene sesquiterpenoids with a 6/5/3/5-caged tetracyclic ring system. All obtained compounds were evaluated for their plant-growth regulatory activity. The results showed that 1, 3, 4, 6, 8, 11, 12, 17, 19, 26, and 27 could suppress the growth of Arabidopsis thaliana, while 2, 5, 13, 15, 18, and 25 showed promoting effects. Among them, compound 3 showed the most potent plant-growth inhibitory activity, which is obviously superior to that of the marked herbicide glyphosate.
Collapse
Affiliation(s)
- Xin-Jia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Shi-Huang Su
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuan-Xiang Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jia Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
6
|
Feng L, Shang RR, Wang XJ, Li L, Li X, Gong YX, Shi LY, Wang JW, Qian ZY, Tan NH, Wang Z. The Natural Alkaloid (-)- N-Hydroxyapiosporamide Suppresses Colorectal Tumor Progression as an NF-κB Pathway Inhibitor by Targeting the TAK1-TRAF6 Complex. JOURNAL OF NATURAL PRODUCTS 2023; 86:1449-1462. [PMID: 37243616 DOI: 10.1021/acs.jnatprod.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Colorectal cancer (CRC) is an exceptionally deadly disease, whereas effective therapeutic drugs for CRC have declined over the past few decades. Natural products have become a reliable source of anticancer drugs. Previously we isolated an alkaloid named (-)-N-hydroxyapiosporamide (NHAP), which exerts potent antitumor effects, but its effect and mechanism in CRC remain unclear. This study aimed to reveal the antitumor target of NHAP and identify NHAP as a promising lead compound for CRC. Various biochemical methods and animal models were used to investigate the antitumor effect and molecular mechanism for NHAP. These results showed that NHAP exhibited potent cytotoxicity, induced both apoptosis and autophagic cell death of CRC cells, and inhibited the NF-κB signaling pathway by blocking the interaction of the TAK1-TRAF6 complex. NHAP also markedly inhibited CRC tumor growth in vivo without obvious toxicities and possessed good pharmacokinetic characteristics. These findings identify, for the first time, that NHAP is an NF-κB inhibitor with potent antitumor activity in vitro and in vivo. This study clarifies the antitumor target of NHAP against CRC, which will contribute to the future development of NHAP as a novel therapeutic lead compound for CRC.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ran-Ran Shang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin-Jia Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ling Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuan-Xiang Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Li-Yuan Shi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jing-Wen Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhi-Yu Qian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
7
|
Li X, Gong YX, Feng L, Wang XJ, Wang JW, Zhang AX, Tan NH, Wang Z. Neuropyrones A-E, five undescribed α-pyrone derivatives with tyrosinase inhibitory activity from the endophytic fungus Neurospora dictyophora WZ-497. PHYTOCHEMISTRY 2023; 207:113579. [PMID: 36586529 DOI: 10.1016/j.phytochem.2022.113579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Five undescribed α-pyrone derivatives, named neuropyrones A-E, were isolated from the endophytic fungus Neurospora dictyophora WZ-497 derived from the stems of Aster tataricus L. f. The structures of these α-pyrones with absolute configurations were determined by comprehensive spectroscopic analysis and computational calculations. All isolated compounds were tested for various bioactivities, including tyrosinase inhibitory activity. The results showed that neuropyrones A-C displayed potent inhibitory effects on tyrosinase with IC50 values of 0.38 ± 0.07, 0.49 ± 0.06, and 0.12 ± 0.01 mM, respectively, which were comparable to that of the positive control, kojic acid (IC50 = 0.14 ± 0.021 mM). A molecular docking study revealed the interaction between 3 and the His263, His85, Val283, Asn260, Phe264, and Val248 residues of tyrosinase.
Collapse
Affiliation(s)
- Xin Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan-Xiang Gong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin-Jia Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing-Wen Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - An-Xin Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Feng L, Zhang AX, Shang RR, Wang XJ, Tan NH, Wang Z. Trichopsistides A and B: Two Highly Oxygenated Pentacyclic Polyketides with Promising Inhibitory Effects on the NF-κB Signaling Pathway from the Fungus Trichoderma koningiopsis WZ-196. J Org Chem 2022; 87:14058-14067. [PMID: 36162105 DOI: 10.1021/acs.joc.2c01674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two highly oxygenated pentacyclic polyketides with two new carbon skeletons, trichopsistide A (1) and trichopsistide B (2), were isolated from the plant endophyte Trichoderma koningiopsis WZ-196 derived from the leaf of Rubia podantha Diels. The structures of these polyketides with full configurations were determined by comprehensive spectroscopic analysis, computer-assisted structure elucidation software, computational calculation, and X-ray crystal diffraction. Among them, 1 represented the first example of an unprecedented 5/6/6/6/5 pentacyclic ketal-containing polyketide pyridine alkaloid, and 2 possessed a novel 6/6/6/6/5 pentacyclic ketal-containing polyketide scaffold fused with an α-pyrone. The plausible biosynthetic route for 1 and 2 was also proposed. Moreover, biological activity assays showed that 1 and 2 possessed inhibitory effects on the NF-κB signaling pathway with IC50 values of 14.77 and 8.58 μM, respectively. Furthermore, 1 and 2 could also inhibit the expression of IκBα and p65 phosphorylation, decrease the expression of MCP-1, E-selectin, and IL-8 at the mRNA level, and inhibit the TNF-α-induced nuclear translocation of p65.
Collapse
Affiliation(s)
- Li Feng
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - An-Xin Zhang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ran-Ran Shang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin-Jia Wang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ning-Hua Tan
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Zhe Wang
- Sate Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
9
|
Wen M, Chen Q, Chen W, Yang J, Zhou X, Zhang C, Wu A, Lai J, Chen J, Mei Q, Yang S, Lan C, Wu J, Huang F, Wang L. A comprehensive review of Rubia cordifolia L.: Traditional uses, phytochemistry, pharmacological activities, and clinical applications. Front Pharmacol 2022; 13:965390. [PMID: 36160419 PMCID: PMC9500525 DOI: 10.3389/fphar.2022.965390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Rubia cordifolia (family: Rubiaceae) L (R. cordifolia) is a perennial botanical drug climbing vine. As the main part of the traditional Chinese medicine, the rhizome has a long history. A great number of literary studies have reported that it can be used for the improvement of blood circulation, hemostasis, activation of collaterals, etc. When it comes to the wide application of R. cordifolia in traditional medicine, we systematically review its traditional uses, phytochemistry and pharmacological effects. Literatures were systematically searched using several scientific databases, including China National Knowledge Infrastructure (CNKI), Baidu Scholar, PubMed, Web of Science, and other professional websites. Kew Botanical Garden and the iPlant were used for obtaining the scientific names and plant images of R. cordifolia. In addition, other information was also gathered from books including traditional Chinese herbal medicine, the Chinese Pharmacopoeia, and Chinese Materia Medica. So far, many prescriptions containing R. cordifolia have been widely used in the clinical treatment of abnormal uterine bleeding, primary dysmenorrhea and other gynecological diseases, allergic purpura, renal hemorrhage and other diseases. The phytochemistry studies have reported that more than 100 compounds are found in R. cordifolia, such as bicyclic peptides, terpenes, polysaccharides, trace elements, flavonoids, and quinones. Among them, quinones and peptides are the types of components with the highest contents in R. cordifolia. The modern pharmacological studies have revealed that R. cordifolia and its derived components have anti-tumor, anti-oxidative, anti-platelet aggregation, and anti-inflammatory effects. However, most studies are preclinical. The pharmacological mechanism of R. cordifolia has not been thoroughly studied. In addition, there are few pharmacokinetic and toxicity studies of R. cordifolia, therefore the clinical safety data for R. cordifolia is lacking. To sum up, this review for the first time summarizes a systemic and integrated traditional uses, chemical compositions, pharmacological actions and clinical applications of R. cordifolia, which provides the novel and full-scale insight for the drug development, medicinal value, and application of R. cordifolia in the future.
Collapse
Affiliation(s)
- Min Wen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wang Chen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Qibing Mei
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Cai Lan
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Plaszkó T, Szűcs Z, Cziáky Z, Ács-Szabó L, Csoma H, Géczi L, Vasas G, Gonda S. Correlations Between the Metabolome and the Endophytic Fungal Metagenome Suggests Importance of Various Metabolite Classes in Community Assembly in Horseradish ( Armoracia rusticana, Brassicaceae) Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:921008. [PMID: 35783967 PMCID: PMC9247618 DOI: 10.3389/fpls.2022.921008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/27/2022] [Indexed: 05/07/2023]
Abstract
The plant microbiome is an increasingly intensive research area, with significance in agriculture, general plant health, and production of bioactive natural products. Correlations between the fungal endophytic communities and plant chemistry can provide insight into these interactions, and suggest key contributors on both the chemical and fungal side. In this study, roots of various horseradish (Armoracia rusticana) accessions grown under the same conditions were sampled in two consecutive years and chemically characterized using a quality controlled, untargeted metabolomics approach by LC-ESI-MS/MS. Sinigrin, gluconasturtiin, glucoiberin, and glucobrassicin were also quantified. Thereafter, a subset of roots from eight accessions (n = 64) with considerable chemical variability was assessed for their endophytic fungal community, using an ITS2 amplicon-based metagenomic approach using a custom primer with high coverage on fungi, but no amplification of host internal transcribed spacer (ITS). A set of 335 chemical features, including putatively identified flavonoids, phospholipids, peptides, amino acid derivatives, indolic phytoalexins, a glucosinolate, and a glucosinolate downstream product was detected. Major taxa in horseradish roots belonged to Cantharellales, Glomerellales, Hypocreales, Pleosporales, Saccharomycetales, and Sordariales. Most abundant genera included typical endophytes such as Plectosphaerella, Thanatephorus, Podospora, Monosporascus, Exophiala, and Setophoma. A surprising dominance of single taxa was observed for many samples. In summary, 35.23% of reads of the plant endophytic fungal microbiome correlated with changes in the plant metabolome. While the concentration of flavonoid kaempferol glycosides positively correlated with the abundance of many fungal strains, many compounds showed negative correlations with fungi including indolic phytoalexins, a putative glucosinolate but not major glucosinolates and a glutathione isothiocyanate adduct. The latter is likely an in vivo glucosinolate decomposition product important in fungal arrest. Our results show the potency of the untargeted metabolomics approach in deciphering plant-microbe interactions and depicts a complex array of various metabolite classes in shaping the endophytic fungal community.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zsolt Szűcs
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Hajnalka Csoma
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Géczi
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Sándor Gonda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
- *Correspondence: Sándor Gonda, ,
| |
Collapse
|